Press Releases

SHARCNET is thrilled to be part of the Science Studio platform, by providing HPC support and hosting services, to enable researchers to remotely control and run experiments at the Canadian Light Source (CLS).

Led by Principal Investigator, Dr. Michael Bauer, who is also the Associate Director, SHARCNET, this CANARIE-funded project gets a boost through a demonstration by Governor General David Johnston in Brazil. See the full CANARIE press release for details.

Western University announced the formation of a new Ontario-based multi-million dollar research and development computing network today with its partners, the Governments of Canada and Ontario, IBM (NYSE: IBM) and the University of Toronto.

One of the primary nodes for the newly formed Southern Ontario Smart Computing and Innovation Platform (SOSCIP) is Western’s Shared Hierarchical Academic Research Computing NETwork (SHARCNET). A part of Compute Canada, SHARCNET is a high performance computing consortium delivering game-changing research and innovation to the world.

The computing infrastructure of Western, IBM and its university partners -- with a combined expertise in high performance and cloud computing -- will form a research platform unlike any other in Canada.

High performance computing refers to the use of supercomputers and computer clusters to solve advanced computational problems while cloud computing is the delivery of computing services via shared resources, software, and information over a network.

“One of the things this contribution from IBM gives Western is a tremendous start in addressing some very substantial problems in regards to dealing with large-scale data,” says Western computer sciences professor Michael Bauer, who also serves as SHARCNET’s Associate Director. “In many, many circumstances, data will become the core problem of the next decade, not in terms of generating data but in terms of what do you do with it and how do you actually glean useful information from it.”

Bauer adds Western will not only have a system with which researchers and computer scientists can begin to examine this core problem but will also receive significant software contributions from IBM, which are necessary to extract this kind of information on a large-scale.

“Western played a leading role in establishing SHARCNET, Canada’s largest high-performance computing consortium, and we are excited to take the next step by using cloud computing to manage the staggering volume of digital data society creates on a daily basis,” says Western President Amit Chakma. “From neuroscience to our environment and industrial applications, supercomputing holds tremendous promise for helping us make complex research decisions more quickly, while mining data for better answers.”

Western’s new IBM-fueled computing system will provide excellent opportunities for small and medium enterprises (SMEs) to explore the applicability of cloud computing and to address many of their computational problems.

“For the financial industry, cloud technology is ideal for solving complex latency sensitive problems on large streaming data sets in real time,” says Ben Bittrolff, Chief Financial Officer at London-based Cyborg Trading Systems. “Western joining forces with IBM on this major initiative is excellent news for all businesses, no matter the size, in Ontario, across Canada and undoubtedly around the world.” More info

Principal Investigators (PIs) at Canadian academic institutions who require access to more than the default allocation of 10 Core Years on Compute Canada’s large shared memory system, Hungabee, are invited to submit proposals requesting allocations of CPU time to Compute Canada.

In addition to offering access to Hungabee with 2048 cores and 16 TB of shared memory, Compute Canada offers applications-enabling assistance from HPC experts at the regional consortia.

The deadline for submitting applications is April 16, 2012 at 3pm EDT. More info

Principal Investigators (PIs) in the fields of Humanities and Social Sciences at Canadian academic institutions who require access to High Performance Computing (HPC) resources on Compute Canada systems are hereby invited to submit proposals requesting allocations of CPU time and storage to the Compute Canada National Resource Allocation Committee (NRAC). Please note that Compute Canada does not charge any access fee for use of the resources nor is there a fee for user support. These resources may be accessed independent of the location of the equipment or the researcher thanks to CANARIE’s national high performance network and the provincial ORANs.

The intent of this program is to permit access to a level of computational resources that would be hard to achieve through informal access to shared resources. For more modest requirements or testing purposes, access is available immediately to most systems and certainly to the SuperMicro system.

The deadline for submitting applications is April 24, 2012 at 3pm EDT. More info

(February 23, 2012 – Ottawa) – Compute Canada, Canada’s national platform of High Performance Computing (HPC) resources and partners, today announced grants of nearly $80 million worth of state-of-the-art computing, storage, and support resources allocated to 159 leading edge Canadian research projects across the country.

Compute Canada’s distributed resources represent close to two petaFLOPs of compute power, which is equal to two quadrillion calculations per second, and more than 20 petabytes of storage, equivalent to more than 400 million four-drawer filing cabinets filled with text. These competitively-awarded grants will allocate nearly 725 million processor-hours and eight petabytes of storage to the projects over the next year. Researchers will also have direct access to more than 40 Compute Canada programming and technical experts who are critical to enabling the efficient use of these state-of-the-art HPC systems.

“The scope and scale of today’s research investigations demand an incredible amount of computational power,” said Compute Canada Executive Director, Susan Baldwin. “Compute Canada responds to that need by delivering the essential tools and resources Canadian researchers need to respond to today’s big data challenges, propel ground-breaking discoveries, and develop new industrial applications or commercial opportunities.”

Each year Compute Canada accepts requests from researchers across the country whose projects require cutting-edge computing resources, storage, and expertise. The projects – which range from aerospace design and climate modeling to medical imaging and nanotechnology -- produce results and breakthroughs that in many cases simply wouldn’t be possible without Compute Canada’s resources.

“I’ve always been a champion of HPC because it enables us to perform the kind of complex, large-scale calculations that are essential for verifying our ideas and uncovering new findings,” says André Bandrauk, a University of Sherbrooke Professor of Theoretical Chemistry and Canada Research Chair in Computational Chemistry & Molecular Photonics. “These resources are critical for driving advancements in Canadian research as well as enabling Canadian researchers to compete on the international stage.”

The partner institutions and resource centres that comprise Compute Canada are hubs of interdisciplinary computational research, connected from coast to coast by the high-speed national CANARIE network and regional advanced networks. Together, these distributed computing facilities work collaboratively to provide the expertise and resources necessary to give Canada’s researchers and innovators access to these world-class technologies.

Compute Canada’s resources are granted based on scientific merit and computational need. In addition to the competitively-allocated grants for above-average computing requirements, all Canadian researchers have access to significant default allocations of computational resources and support expertise. For more information on Compute Canada, its regional consortia, and its distributed resources, visit the Compute Canada website: More info

We are happy to announce that registration for SHARCNET Research Day 2012 is now open. The event will take place May 23, 2012 at the University of Guelph. Topics for presentations and posters include, but are not limited to, the following subject areas:

  • Computer science, algorithms and methods
  • Computational finance and statistics
  • Applied mathematics
  • Computational chemistry and biology
  • Computational physics
  • Computational fluid dynamics and engineering
  • Health science
  • Digital humanities

The abstract submission deadline is May 6, 2012.

A special issue of the Journal of Computational Science, which aims to be an international publication of novel research across all scientific disciplines, will be organized. Participants are invited to submit papers to be considered for publications. Please note that submission to the special issue is optional and is not required for participation or giving a presentation at Research Day. The deadline for paper submission is expected to be approximately three months after Research Day and will be announced later.

A printable poster is available for distribution.

HPCS 2012 and BCNET have opened registration and launched the event website for this year’s conference in Vancouver, BC. Co-hosted by WestGrid, Compute Canada and BCNET, the event is themed Connect. Compute. Collaborate. and will take place May 1-3, 2012. The three-day program is expected to draw nearly 500 delegates from post-secondary institutions, research organizations and technology-driven industries from across Canada. A call for papers has been issued online, with a deadline of March 15th for abstract submissions. Topics areas for papers include, but are not limited to, the following subjects:

  • Applications of HPC to any discipline in the physical, life and social sciences, and engineering
  • Computer architectures
  • Parallel/distributed/vector algorithms
  • Grid or cloud computing and related tools
  • Performance Modeling Evaluation
  • Wide-area data transfer
  • Management of large data sets
  • Green HPC or energy-efficient data centres
  • Visualization
  • Systems and Management

Accepted papers presented as lectures or posters will be published online in the open access Journal of Physics: Conference Series (JPCS), which is published by the Institute of Physics Publishing in the UK. All papers published in JPCS are fully citable and upon publication will be free to download. Citations to JPCS papers are tracked online using IOP Publishing’s citing articles facility, in addition to the full citation tracking facilities provided by Scopus.

For more information, or to submit your abstract online, please visit the HPCS 2012 website or email

Hamilton, ON (Feb. 6, 2012) – Closing elementary and secondary schools can help slow the spread of infectious disease and should be considered as a control measure during pandemic outbreaks, according to a McMaster University led study.

Using high-quality data about the incidence of influenza infections in Alberta during the 2009 H1N1 flu pandemic, the researchers show that when schools closed for the summer, the transmission of infection from person to person was sharply reduced.

“Our study demonstrates that school-age children were important drivers of pH1N1 transmission in 2009,” says David Earn, lead author of the study published in Annals of Internal Medicine. Earn is professor in the Department of Mathematics and Statistics and member of McMaster’s Michael G. DeGroote Institute for Infectious Disease Research (IIDR).

Alberta was the only Canadian province to continue extensive virologic testing throughout the first wave and continuously to the middle of the second wave of the 2009 pandemic, allowing researchers to identify the causes of changes in incidence as the pandemic progressed.

“The data that we obtained were so good that our plots immediately revealed a huge drop in incidence when schools were closed for the summer,” says Earn. “Using state-of-the-art modeling, we then demonstrated that transmission was reduced by at least 50 per cent.”

The model also indicates that seasonal changes in weather significantly affected influenza transmission in cities in Alberta, but that they were much less important than school closures.

“Our study emphasizes the value of gathering data consistently throughout an outbreak,” says Earn. “For example, in Ontario they imposed testing restrictions on June 11, before schools had closed. We couldn’t possibly have done this analysis based on other parts of Canada.”

Earn and colleagues intend to continue to encourage policy makers to collect data through the course of an infectious disease outbreak. Only by swabbing large numbers of people throughout a pandemic, he says, the effects of various changes in behavior or control strategies are shown.

He adds that this article will help policy makers make the hard decision of whether or not to close schools during a pandemic outbreak.

“This strongly suggests that closing schools as a preventative measure is a strategy worth seriously thinking about. The next time a disease like SARS or the 1918 flu emerges, this paper will give policy makers more confidence that closing schools is likely to significantly reduce the rate of transmission.”

The study also involved McMaster investigators Jonathan Dushoff, associate professor of biology, and Mark Loeb, professor and division director of infectious diseases for the Michael G. DeGroote School of Medicine, who are also members of the IIDR.

The study received funding from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Public Health Agency of Canada and McMaster’s Michael G. DeGroote Institute for Infectious Disease Research. Computing resources for simulations were provided by Compute Canada’s SHARCNET.