Publication: Effect of double bond position on lipid bilayer properties: Insight through atomistic simulations

All || By Area || By Year

Title Effect of double bond position on lipid bilayer properties: Insight through atomistic simulations
Authors/Editors* H. Martinez-Seara, T. Rog, M. Pasenkiewicz-Gierula, I. Vattulainen, M. Karttunen, and R. Reigada
Where published* J. Phys. Chem. B
How published* Journal
Year* 2007
Volume 111
Pages 11162 -11168
Keywords molecular dynamics, lipids, membranes
Phosphatidylcholines (PCs) are among the most common phospholipids in plasma membranes. Their structural and dynamic properties are known to be strongly affected by unsaturation of lipid hydrocarbon chains, yet the role of the exact positions of the double bonds is poorly understood. In this work, we shed light on this matter through atomic-scale molecular dynamics simulations of eight different one-component lipid bilayers comprised of PCs with 18 carbons in their acyl chains. By introducing a single double bond in each acyl chain and varying its position in a systematic manner, we elucidate the effects of a double bond on various membrane properties. Studies in the fluid phase show that a number of membrane properties depend on the double bond position. In particular, when the double bond in an acyl chain is located close to the membrane-water interface, the area per lipid is considerably larger than that found for a saturated lipid. Further, when the double bond is shifted from the interfacial region toward membrane center, the area per lipid is observed to increase and have a maximum when the double bond is in the middle of the chain. Beyond this point, the surface area decreases systematically as the double bond approaches membrane center. These changes in area per lipid are accompanied by corresponding changes in membrane thickness and ordering of the chains. Further changes are observed in the tilt angles of the chains, membrane hydration together with changes in the number of gauche conformations, and direct head group interactions. All of these effects can be associated with changes in acyl chain conformations and local effects of the double bond on the packing of the surrounding atoms.
Go to Biophysics
Back to page 71 of list