Quasi-Monte Carlo particle filters on multi-core architectures

Second SHARCNET Symposium on GPU and Cell computing

R. G. Esteves

University of Waterloo, RapidMind Corporation

May 20th, 2009

Outline

Meaning from signals

Signal	Semantics	
time-indexed values	handwritten text/math	
	financial significance	
	medical situation	
location, intensity pairs	identification of medical structures	
	identification of dangerous objects	
time indexed images	behaviour recognition	

2

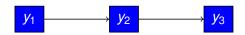
イロト イヨト イヨト イヨト

Describing signals

- Measurements are uncertain
- Great variability
 - spatial differences scale
 - temporal differences speed, duration
 - context difference background

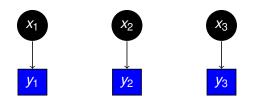
Instead of analyzing observed signal

Posit (latent) process ("model") that generates signal



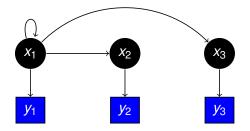
(UW / Rapid	

- Instead of analyzing observed signal
- Posit (latent) process ("model") that generates signal

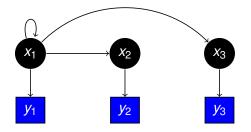


4 A N

- Instead of analyzing observed signal
- Posit (latent) process ("model") that generates signal



- Instead of analyzing observed signal
- Posit (latent) process ("model") that generates signal



Transition $p(x_t|x_{t-1})$ Observation $p(y_t|x_t)$

The estimation problem

$$p(x_t|y_{0:t}) \propto p(y_t|x_t)p(x_t|y_{0:t-1})$$

$$p(x_t|y_{0:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{0:t-1})dx_{t-1}$$

2

イロト イヨト イヨト イヨト

The estimation problem

$$p(x_t|y_{0:t}) \propto p(y_t|x_t)p(x_t|y_{0:t-1})$$

$$p(x_t|y_{0:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{0:t-1})dx_{t-1}$$

- If transition/observation models are linear/Gaussian, solve by Kalman filter
- KF allows optimal solution
- Common approach for nonlinear/non-Gaussian problems: linearize, KF
- Nonlinear case handled directly by SMC methods

The estimation problem

$$p(x_t|y_{0:t}) \propto p(y_t|x_t)p(x_t|y_{0:t-1})$$

$$p(x_t|y_{0:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y_{0:t-1})dx_{t-1}$$

- If transition/observation models are linear/Gaussian, solve by Kalman filter
- KF allows optimal solution
- Common approach for nonlinear/non-Gaussian problems: linearize, KF
- Nonlinear case handled directly by SMC methods

Sequential Monte Carlo (SMC, or Particle Filter)

- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or particle representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

- Sequential Monte Carlo (SMC, or Particle Filter)
- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or particle representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

- Sequential Monte Carlo (SMC, or Particle Filter)
- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or particle representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

- Sequential Monte Carlo (SMC, or Particle Filter)
- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or particle representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

- Sequential Monte Carlo (SMC, or Particle Filter)
- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or *particle* representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Sequential Monte Carlo (SMC, or Particle Filter)
- Enable approximate solution to non-linear systems
- Better to have approximate solution to real problem than exact solution to approximate problem
- Maintain discrete, or particle representation of filtering distribution
- Founded on Bayesian principles
 - Domain-knowledge and other prior information readily incorporated
 - Results are full distributions, not point- or interval-estimates
- Sampling techniques are (significantly) more computationally demanding than analytical solutions.

∃ ► < ∃ ►</p>

(UW / RapidMind)

2

イロト イヨト イヨト イヨト

(UW)		

イロト イヨト イヨト イヨト

(UW / RapidMind)

2

イロト イヨト イヨト イヨト

(UW)	/ Ra	nidN	(lind)
(0,0,0,)	/ I la	piun	/iniu)

2

イロト イロト イヨト イヨト

(UW / RapidMind)

2

イロト イヨト イヨト イヨト

Particle filter algorithm

1: for $t \in \{2, \dots T\}$ do

2: Sample *N* particles $\{\tilde{x}_t^{(i)}\}_{i=1}^N \sim p(x_t|x_{t-1})$

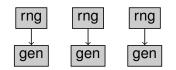
3: Likelihood evaluation
$$\omega_t^{(i)} = \frac{p(y_t | \tilde{x}_t^{(i)})}{\sum_{i=1}^N p(y_t | \tilde{x}_t^{(i)})}$$

4:
$$\{x_t^{(i)}\}_{i=1}^N \leftarrow \mathsf{ResampLing}(\tilde{X}, \{\omega^{(i)}\})$$

5: end for

function RESAMPLING(X, Ω) index ~ Multinomial(Ω) return DIFFUSE({ $x^{(i)} | x^{(i)} \in X \land i \in index$ }) end function

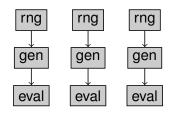
Particle dynamics



æ

Particle dynamics

Likelihood evaluation

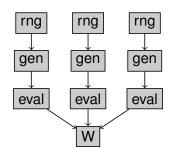


э

Particle dynamics

Likelihood evaluation

Resampling

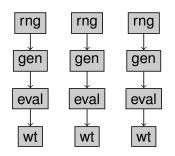


э

Particle dynamics

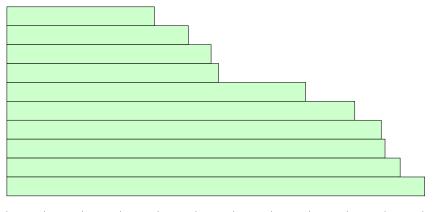
Likelihood evaluation

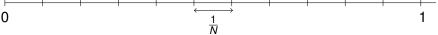
Resampling



э

Parallel resampling methods

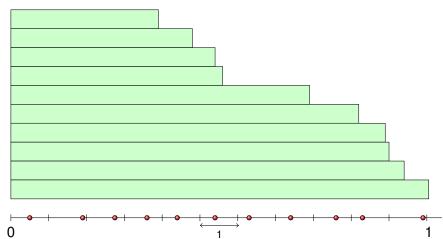




1	(LIW)	/ Rani	idMind)
	0	riap	(ulviiniu)

크

Parallel resampling methods



	\overline{N}		
		미 > 《谜 > 《문 > 《문 > _ 문	$\mathcal{O}\mathcal{A}\mathcal{O}$
(UW / RapidMind)	QMC PFs	May 20th, 2009	11 / 18

Are parallel algorithms enough to cope with problem size?

- Inference problems scale exponentially ("curse of dimensionality")
- Parallel machines only offer solutions that scale linearly
- Additional improvements are needed

Are parallel algorithms enough to cope with problem size?

- Inference problems scale exponentially ("curse of dimensionality")
- Parallel machines only offer solutions that scale linearly
- Additional improvements are needed

Increasing efficiency of PF

Reducing time to process each particle

- Subspace sampling
- Simplify likelihood ratio evaluation

Reduce number of particles necessary to achieve accuracy

- Improve guesses importance sampling
- Application-specific heuristics (local search)
- Variance reduction

Increasing efficiency of PF

Reducing time to process each particle

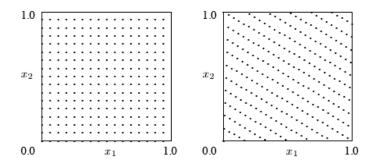
- Subspace sampling
- Simplify likelihood ratio evaluation
- Reduce number of particles necessary to achieve accuracy
 - Improve guesses importance sampling
 - Application-specific heuristics (local search)
 - Variance reduction

The Sec. 74

Quasi-Monte Carlo techniques

- Variance reduction technique
- Lattice particle filters [Lemieux et al., 2001]
- Sequence driving simulation is now not independent, (randomized) highly-uniform
- Can use components of state that result in most significant variation ("effective dimension")
- Fight "over-adaptation" of traditional SIR PF.

Low-discrepancy sequences



크

Results

Tracker: 4D state, (x, y, w, h)

Implementation	N	Error	Performance
Serial SIR	10 ³	3.8	1
Parallel SIR (G94)	10 ³	3.3	15.3
Parallel LPF (G94)	10 ³	0.7	9.2

2

イロト イヨト イヨト イヨト

Future work

- Experiment with more localized resampling algorithms
- Trajectory recognition using multi-core host/GPU array
- Sensitivity analysis for better choice of lattice rule

Conclusions

- Bayesian signal processing is a very powerful and general tool
- Sequential Monte Carlo methods allow for flexible Bayesian inference
- Parallel processors are crucial to enabling inferencing
- Parallel processing alone cannot handle curse of dimensionality