RapidMind

Accelerating Medical Imaging

May 13, 2009

Outline

- Medical imaging software challenges
- Case studies
 - Elastography, registration, breast cancer screening
- Platform
 - System overview
 - Detailed example: algebraic reconstruction
- Medical imaging solutions
 - Imaging extensions
 - Registration component
 - Component roadmap

Medical Imaging Software Development Challenges

Need for application acceleration

- Growing data sizes
- Mainstreaming of volume imaging
- Need for efficient workflows and interactivity
- Need for advanced volume processing increasing

Insufficient development resources

- GPUs and multi-core CPUs are capable but difficult to program
- Hardware choices in constant flux
- High costs associated with changing development tools
- Need to complete projects faster
- Need to reduce effort spent on non-core development
- Want to focus effort on value-added features

Challenges Need for Application Acceleration

Growing data sizes

- Toshiba 320-slice dynamic volume CT imager
- 4D perfusion and cardiac studies

Mainstreaming of volume imaging

• Frost and Sullivan: 3D studies now standard, 4D usage increasing

Need for efficient workflows and interactivity

Radiologists paid by case

Need for advanced volume processing

- Automated cancer screening
- Automated Alzheimer's screening
- Multimodality studies
- Stroke evaluation
- Real-time registration for image-guided surgery
- Real-time registration for radiation therapy

Medical Imaging and Visualization Case Studies

University of Waterloo

•2D/3D Registration of CT and X-Ray data for image-guided surgery

With RapidMind ...

- 100x speed up driving time to 3 seconds
- Image analysis is rendered real-time
- Cancer screening and diagnosis is immediate, and can be used to guide non-invasive surgeries

Dartmouth Medical School

•Quasi-static Elastography image analysis used to diagnose breast cancer from ultra-sound data

- 10x speed up driving time to 1 second
- Image analysis is rendered real-time
- Cancer screening and diagnosis is immediate, and can be used to guide non-invasive surgeries

RapidMind Demonstration

Algebraic reconstruction

With RapidMind ...

- 60x speedup
- Reconstruction completed faster than data can be acquired
- Possible to use more flexible imaging geometries and obtain higher image quality than is possible with traditional cone-beam backprojection

Pioneer in the development of medical software solutions that help improve workflow and productivity
B-CAD[™] V1 Computer-aided Detection of breast cancer from ultrasound images

With RapidMind ... •9x speed up on multi-core CPU with GPU acceleration •A heterogeneous application that leverages multi-core with seamless GPU acceleration •Increased accuracy of diagnosis

5/27/2009

Medical Imaging Case Studies 2D/3D Registration

RapidMind implementation runs over 100 times faster than serial C++ baseline

 2D/3D registration finds rotation of 3D volume so its projection aligns with given 2D image

- Combines volume rendering for projection with computation of registration metric and optimization
- Useful for contrast enhancement in image-guided surgery
- For more information see: Lin Xu and Justin Wan, Real-Time Intensity-Based Rigid 2D-3D Medical Image Registration Using RapidMind Multi-Core Platform.

Medical Imaging Case Studies Computer-aided Detection of Breast Cancer

RapidMind implementation runs 9 times faster than original design – a performance requirement for customer acceptance

Medipattern's award-winning flagship B-CAD® solution helps characterize, evaluate, and document breast ultrasound images in a thorough, organized way that integrates easily into daily practice.

medipattern

Medical Imaging Case Studies Elastography Image Analysis

10x

RapidMind implementation runs 10 times faster achieving interactive user experience

Raw Ultrasound Image

A closer look: NVIDIA 8800 GPU

Original MATLAB implementation: 240 seconds to render C++ implementation: 10 seconds to render RapidMind implementation: 1 second to render

Correlated Ultrasound Image

Source:

Dr. Susan Swartz, Dartmouth Medical School, Dr. Marvin Doyley, Professor of Radiology and John Wallace, Academic Computing.

5/27/2009

Medical Imaging Case Studies Algebraic Reconstruction

RapidMind's algebraic reconstruction implementation can reconstruct an entire volume in under 3 seconds using a single GPU

X-rays projecting through the volume

Visualization of algebraic reconstruction of CT data

A closer look: GPU AMD quad-core Opteron with ATI 1900 GPU 6 iterations used to reconstruct a 256x256x112 volume in 3s total

RapidMind Product Overview

RapidMind provides:

- 1. A flexible *platform* that allows an arbitrary algorithm to be expressed and efficiently mapped to both multi-core CPUs and GPUs
- 2. Accelerated volume processing *components* that provide core building blocks for medical imaging applications

RapidMind Platform Benefits

The RapidMind Multi-Core Development Platform provides software organizations with:

Productivity

Build and deliver multi-core capable applications faster using existing practices, tools and compilers

Performance

Significant performance gain on one core, multiple cores, *or* accelerators

Portability

Applications are hardware independent and will automatically scale to additional cores and future multi-core processors and accelerators

Portability Now and Into the Future

Trends: Massive parallelism, heterogeneity, and hybrid computing

RapidMind provides portability, scalability and future-proofing

RapidMind Platform System Architecture

API

 Intuitive, integrates with C++, and requires no new tools or workflow

Platform

- Code Optimizer analyzes and optimizes computations to remove overhead
- Load Balancer plans and synchronizes work to keep all cores fully utilized
- Data Manager reduces data bottlenecks
- Logging/Diagnostics detects and reports performance bottlenecks

Processor Support Modules

- x86 processors from AMD and Intel
- ATI/AMD and NVIDIA GPUs
- Cell Blade, Cell Accelerator Board, PS3

RapidMind Platform Programming Model

- Map function over array:
 - Parallel application: C = f(A,B)
 - Can use control flow (SPMD model)
 - Can random access other arrays
 - Can declare and use local arrays
 - Can call sub-programs
 - Can read and write to subarrays
- Collective operations:
 - Reduce: a = reduce (p, A)
 - Others...

RapidMind Platform Interface Summary

Usage:

- Include platform header
- Link to runtime library

Data:

- Values
- Arrays
- Data abstraction

Programs:

- Defined dynamically
- Execute on coprocessors
- Code abstraction

```
#include <rapidmind/platform.hpp>
using namespace rapidmind;
```

```
Value1f f = 2.0f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);
```

```
Program prog = BEGIN {
    In<Value3f> r, s;
    Out<Value3f> q;
    q = (r + s) * f;
} END;
```

```
a = prog(a,b);
f = 3.0f;
stride(a,2,2) = prog(
    slice(a,0,255,0,255),
    slice(b,256,511,0,255));
```

Medical Imaging Case Studies Algebraic Reconstruction

RapidMind's algebraic reconstruction implementation can reconstruct an entire volume in under 3 seconds using a single GPU

Visualization of algebraic reconstruction of CT data

A closer look: GPU AMD quad-core Opteron with ATI 1900 GPU 6 iterations used to reconstruct a 256x256x112 volume in 3s total

Algebraic Reconstruction Kaczmarz Iterative Method

- Let y be the measured projections
- Let z be the (unknown) volume
- Let A be the volume-to-projection mapping
- Need to solve y = Az for z given y
- Kaczmarz iteration:

$$z_{(i+1)} \leftarrow z_{(i)} + A^T R (y - A z_{(i)})$$

- Interpretation:
 - A is forward projection
 - y A z is correction
 - A^T is backprojection
 - R is filtering (preconditioner; sharpening)

Algebraic Reconstruction Kaczmarz Iterative Method

```
Array<2,Value4f>
reconstruct (
  Array<2,Value4f> y
)
  sharp = 100.0f;
  beta = 3.0f;
  Array<2,Value4f> z;
  z = backproject(y);
  for (int i = 1; i < n iterations; i++) {</pre>
     Array<2,Value4f> c = project(y,z);
     z = backproject(z,c);
     sharp *= 0.05f; // converge to zero
     float blend = 0.7f;
     beta = blend*beta + (1.0f-blend)*0.9f;
  }
  return z;
}
```

Algebraic Reconstruction Kaczmarz Iterative Method

```
prog backproj = BEGIN {
     In<Value2i> u;
     In<Value4f> base;
     Out < Value4f > r = 0;
     Value1f theta = 0:
     Value1f theta inc = float(PI/data height);
     Value2f p = Value2f(u) *Value2f(1.0/data height,1.0/data width)
               + Value2f(-0.5,-0.5);
     Value2f c = Value2f(-sharp,1.0f+2.0f*sharp);
     Value1i i = N:
     DO {
          Value2f d = Value2f(sin(theta), -cos(theta));
          Value1f t = dot(p,d)+0.5f;
          Value2f v = Value2f(t,theta/PI);
          Value2f w = floor(v);
          Value2f f;
          f(0) = v(0) - w(0);
          f(1) = 1.0f - f(0);
          Value4f ww = w(0,0,0,1) + Value4f(-1,1,2,0);
          Value4f s1 = data[w];
          Value4f s2 = data[ww(1,3)];
          Value4f s0 = data[ww(0,3)];
          Value4f s3 = data[ww(2,3)];
          Value4f h0 = c(0) * s0 + c(1) * s1 + c(0) * s2;
          Value4f h1 = c(0)*s1 + c(1)*s2 + c(0)*s3;
          r += f(1) *h0 + f(0) *h1;
          theta += theta inc;
      UNTIL (0 == --i); 
     r = base + beta * r / float(N);
} END;
```

RapidMind Imaging Extensions

Extensions

- Basic libraries and platform support for imaging
- Common patterns of parallel computation in imaging are built into the platform
 - Point operations and stencil-based filtering operations are "native" to the platform
 - Category reductions for computations on irregular "blobs" are built-in operations (also an implementation of "map-reduce")
- Libraries for common operations:
 - K-means quantization
 - Flood-fill labeling of connected components
 - Noise reduction

RapidMind Imaging Extensions

RapidMind Imaging Extensions

RapidMind Imaging Components

Components

- Libraries that solve some of the most challenging enabling functionality in the volume processing pipeline
- Accelerate performance by leveraging multiple CPU cores and GPU hardware acceleration
 - Minimum of 10x the performance of existing CPU-based implementations
 - Flexibility to customize through configuration, source license, or professional services
- Order of magnitude performance improvement can enable you to deliver new workflows and new applications

Imaging Components MSD Rigid Registration

Key features and functionality

- Rigid registration with Euclidean transformations
- Mean squared differences comparison metric
- Linear interpolation of moving volume
- Bounding-box ROI on fixed volume
- Two volumes of up to 512x512x256 voxels
- Support for 16-bit precision data

Use cases

 Comparison of rigid volumes taken at different times with the same modality

RapidMind Rigid Registration Performance

Test case using **entire** 512x512x64 volume and a GeForce 280 GPU

Inner loop performance:

- Approximately 25 SSD comparison metric evaluations
- Metric comparisons require 95% of runtime
- Speedups of 75x to 95x observed over serial ITK baseline

Overall performance:

- Serial ITK baseline: 254s
- RapidMind implementation: 16s (approx 16x faster overall)

Observations:

- After acceleration, overall performance dominated by non-accelerated serial preprocessing. A portion of that could *also* be accelerated.
- ITK is still useful for preprocessing, as long as these operations do not dominate performance.

RapidMind Rigid Registration Performance vs. ROI Size

Conclusion Matching Goals and Capabilities

Goal	Capabilities Needed
Reduce development costs	 Application developers can be responsible for optimization without having to become GPU programming experts
	 Architects can leverage a set of fundamental components that let them concentrate on specific value-add functionality
Reduce time to market	 Leverage existing accelerated libraries for volume processing
	 Access an external group of experts in developing accelerated imaging algorithms
Reduce risk	 Simultaneously support both NVIDIA and ATI GPUs
	 Solution will continue to work on future processors such as Intel Larrabee
	 Volume processing capabilities built on a customizable imaging platform that is easily extended

RapidMind Conclusion

- Since 2004, entire company dedicated to delivering accelerated solutions on GPUs and multi-core CPUs
 - Spun off from 5 years of University of Waterloo research
 - Company is a recognized leader in accelerated computing
- RapidMind has helped software organizations accelerate their imaging applications by an order of magnitude

RapidMind provides

- A general-purpose software development platform that allows users to implement and deploy their own high-performance portable algorithms on accelerators
- Customizable and portable core software components for accelerated medical imaging on both GPUs and multi-core CPUs

