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Overview
• High-level objectives
• Scheduling schematic
• Resource costing
• Fair access
• Job scheduling specifics

– Test jobs
– Serial
– Parallel

• Technical requirements
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General Policy Issues
Overall aim is to use all SHARCNET resources effectively & 

maximize user throughput
• System-wide accounting: user priorities determined from use of 

all SN facilities (by user, group or project)
• Appropriate cluster use, but avoid wasting cycles

– SN2 architectures tailored to specific applications but all can 
run, e.g., serial jobs

• Contributors: pre-emptive access
• Batch operation: jobs normally run in batch mode – throughput 

timescale ideally ~ f × runtime, f ≲ 1; allow testing & debugging
• Fair use: users should have similar probability of starting a job 

(at similar levels of use)
• Transparent accounting & feedback: procedures and 

information used to determine priority/fairshare, expected 
queue time etc. should be available to users 



General Requirements

• “Queue-less” scheduling: treat systems as one flat 
resource, let scheduler handle job placement: improves 
efficiency and flexibility (really partition-less scheduling, cf.
APAC document)

• Central database: records jobs across all SHARCNET

• SN-wide queuing:

– Reference global user statistics to determine fairshare

– Ability to manage global and local job submission 
including moving jobs, fault tolerance…

– work towards “property” queues: serial, small 
parallel/threaded, licenced software etc.



Cost
• “Charge” for CPU time: could measure use of many other resources: 

memory, network, storage
• Normalised SHARCNET Cost/CPU-Hour (NSC): priorities/fair use 

determined by the NSC, function of real cpu-time and other factors:
– User-adjusted priorities: users can choose to run/start at higher or lower 

priority and corresponding higher or lower NSC; ideally a user could 
dynamically adjust this priority (perhaps designate a single urgent job)

– Dynamic cost: a job started as “urgent” at 3 × rate would drop to 1 × rate if 
machine became empty

– Varying CPU power: charge less for less powerful CPUs – primarily to 
encourage use of older systems

– Incentives: discount NSC/actual to encourage appropriate/beneficial use:
• Checkpointing (especially parallel jobs)
• Demonstrated efficiency (scaling, fraction of node peak, effort etc.)
• Certification
• Research reporting

– Dedicated time: runs at NSC/actual = 0 (perhaps accumulated at night, 
weekends etc. within 6-month window)



Fair Access
• Generally, once a job is started, it should run to completion: the 

priority assigned to a user or job affects its probability of starting
• Probability of a job starting should not depend on submission time. 

Starting probability: 
– Is decreased if a large number of that user’s jobs is running
– Is decreased if that user has accumulated a large NSC over some 

period*
– Depends on user-assigned priorities
– May depend on *dynamic “fairshare” averages: priority decreased 

for a day, week etc. if heavy use over a day, week etc.
• A user’s fairshare state(s), starting probability and queue wait time 

should be available to them via the portal together with average wait 
times etc.

• Ability to modify user’s priority depending upon group or project use



Test Jobs

Users should have ability to run test jobs (even on production clusters). 
Such jobs/queues should:

• Run quickly

• Be established to avoid misuse: higher NSC or allocation of test
time

– One test job at a time per user

• Need to ensure that test jobs do not orphan preempted jobs (a test 
job should pre-empt a job of the same size, perhaps preferentially a 
user’s own job; any job that is pre-empted should ideally resume as 
before once the test job has completed)

• Ideally, such jobs should be flexibly and dynamically scheduled 
without the need for a special test queue of reserved processors



Job Scheduling
• Serial jobs: jobs normally run to completion; starting 

probability is determined as above (do not normally share 
resources with other equal priority jobs)

• Parallel jobs: challenge is to reserve sufficient processors to 
start job without idling those processors; simple pre-emption 
can leave stranded jobs
– Reserve a second slot on a cpu for a pre-empting job and when this 

occurs, coarsely time slice between the two. 
– Allows pre-empted job to checkpoint – resubmit/migrate
– Duty cycle perhaps 50/50, but must ensure pre-empted job stops –

80/20? In principle priority could affect duty cycle
– Efficient scheduling probably requires power-of-2 no. of processors; 

scheduler should enforce correct no. of processors/node etc.
– Cost should encourage scaling not merely many procs, suggest:

cpucpu NTNSCNSC /: ×=



Technical Requirements

• Direct access to and control of job starting and placement 
mechanisms

• Ability to dynamically adjust priority of job (for users and 
system – cf. nice)

• Ability to do coarse-grained time-slicing (suspend/resume)

• Detailed control of priority/fairshare calculation

• Ability to access system accounting tables and generate 
SHARCNET-wide data

• …
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