
computing tomorrow’s solutions

SHARCNET
Job Scheduling Policy and 

Requirements 
Strawman Document

2005/6



Overview
• High-level objectives
• Scheduling schematic
• Resource costing
• Fair access
• Job scheduling specifics

– Test jobs
– Serial
– Parallel

• Technical requirements



Lake Ontario
Lake
Huron

C

U

T

Sα α

P

S

P

Windsor

Western

Waterloo

Guelph

UOIT

York
Fields

Brock

McMaster

Laurier

Sheridan

Fanshawe

Robarts

Perimeter

Lake Erie

T

αG

P

P

10 Gb/s

α Redeployed Alphas

1 Gb/s

C Capability clstr
T Throughput clstr
S SMP
G Grid Lab
T Interconnect Topology Cluster

Tape

Fast disc

Archive 

100km

50 mi

(0.1ms)

All sites: Visualization + AccessGrid

Proposed expansion;
Fully funded 4/3/2004



General Policy Issues
Overall aim is to use all SHARCNET resources effectively & 

maximize user throughput
• System-wide accounting: user priorities determined from use of 

all SN facilities (by user, group or project)
• Appropriate cluster use, but avoid wasting cycles

– SN2 architectures tailored to specific applications but all can 
run, e.g., serial jobs

• Contributors: pre-emptive access
• Batch operation: jobs normally run in batch mode – throughput 

timescale ideally ~ f × runtime, f ≲ 1; allow testing & debugging
• Fair use: users should have similar probability of starting a job 

(at similar levels of use)
• Transparent accounting & feedback: procedures and 

information used to determine priority/fairshare, expected 
queue time etc. should be available to users 



General Requirements

• “Queue-less” scheduling: treat systems as one flat 
resource, let scheduler handle job placement: improves 
efficiency and flexibility (really partition-less scheduling, cf.
APAC document)

• Central database: records jobs across all SHARCNET

• SN-wide queuing:

– Reference global user statistics to determine fairshare

– Ability to manage global and local job submission 
including moving jobs, fault tolerance…

– work towards “property” queues: serial, small 
parallel/threaded, licenced software etc.



Cost
• “Charge” for CPU time: could measure use of many other resources: 

memory, network, storage
• Normalised SHARCNET Cost/CPU-Hour (NSC): priorities/fair use 

determined by the NSC, function of real cpu-time and other factors:
– User-adjusted priorities: users can choose to run/start at higher or lower 

priority and corresponding higher or lower NSC; ideally a user could 
dynamically adjust this priority (perhaps designate a single urgent job)

– Dynamic cost: a job started as “urgent” at 3 × rate would drop to 1 × rate if 
machine became empty

– Varying CPU power: charge less for less powerful CPUs – primarily to 
encourage use of older systems

– Incentives: discount NSC/actual to encourage appropriate/beneficial use:
• Checkpointing (especially parallel jobs)
• Demonstrated efficiency (scaling, fraction of node peak, effort etc.)
• Certification
• Research reporting

– Dedicated time: runs at NSC/actual = 0 (perhaps accumulated at night, 
weekends etc. within 6-month window)



Fair Access
• Generally, once a job is started, it should run to completion: the 

priority assigned to a user or job affects its probability of starting
• Probability of a job starting should not depend on submission time. 

Starting probability: 
– Is decreased if a large number of that user’s jobs is running
– Is decreased if that user has accumulated a large NSC over some 

period*
– Depends on user-assigned priorities
– May depend on *dynamic “fairshare” averages: priority decreased 

for a day, week etc. if heavy use over a day, week etc.
• A user’s fairshare state(s), starting probability and queue wait time 

should be available to them via the portal together with average wait 
times etc.

• Ability to modify user’s priority depending upon group or project use



Test Jobs

Users should have ability to run test jobs (even on production clusters). 
Such jobs/queues should:

• Run quickly

• Be established to avoid misuse: higher NSC or allocation of test
time

– One test job at a time per user

• Need to ensure that test jobs do not orphan preempted jobs (a test 
job should pre-empt a job of the same size, perhaps preferentially a 
user’s own job; any job that is pre-empted should ideally resume as 
before once the test job has completed)

• Ideally, such jobs should be flexibly and dynamically scheduled 
without the need for a special test queue of reserved processors



Job Scheduling
• Serial jobs: jobs normally run to completion; starting 

probability is determined as above (do not normally share 
resources with other equal priority jobs)

• Parallel jobs: challenge is to reserve sufficient processors to 
start job without idling those processors; simple pre-emption 
can leave stranded jobs
– Reserve a second slot on a cpu for a pre-empting job and when this 

occurs, coarsely time slice between the two. 
– Allows pre-empted job to checkpoint – resubmit/migrate
– Duty cycle perhaps 50/50, but must ensure pre-empted job stops –

80/20? In principle priority could affect duty cycle
– Efficient scheduling probably requires power-of-2 no. of processors; 

scheduler should enforce correct no. of processors/node etc.
– Cost should encourage scaling not merely many procs, suggest:

cpucpu NTNSCNSC /: ×=



Technical Requirements

• Direct access to and control of job starting and placement 
mechanisms

• Ability to dynamically adjust priority of job (for users and 
system – cf. nice)

• Ability to do coarse-grained time-slicing (suspend/resume)

• Detailed control of priority/fairshare calculation

• Ability to access system accounting tables and generate 
SHARCNET-wide data

• …



-

Jobs table

Global db

-
Jobs

Local db

-
Jobs

Local db

-
Jobs

Local db

-
Jobs

Local db

Clusters

User
jobs

User queries

User
jobs

Job
migration

Priority
calculation

Scheduler

Job management
Jobs monitor


	Overview
	General Policy Issues
	General Requirements
	Cost
	Fair Access
	Test Jobs
	Job Scheduling
	Technical Requirements

