Singularity

preney@sharcnet.ca

School of Computer Science
University of Windsor
Windsor, Ontario, Canada

Copyright © 2018 Paul Preney. All Rights Reserved.

Feb. 14, 2018
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ What is Singularity?</td>
</tr>
<tr>
<td>✔️ Installing Singularity</td>
</tr>
<tr>
<td>✔️ Loading Singularity</td>
</tr>
<tr>
<td>✔️ Creating Images</td>
</tr>
<tr>
<td>✔️ Using Singularity</td>
</tr>
<tr>
<td>✔️ HPC Issues With Singularity</td>
</tr>
<tr>
<td>✔️ Thank You and Questions</td>
</tr>
</tbody>
</table>
Singularity is open source software created by Berkeley Lab:

- as a secure way to use Linux containers on Linux multi-user clusters,
- as a way to enable users to have full control of their environment, and,
- as a way to package scientific software and deploy that package to different clusters having the same architecture.

URL: http://singularity.lbl.gov
What is Singularity?

Singularity provides operating-system-level virtualization called containers.

A container is different from a virtual machine:
- containers have less overhead, and,
- can only run the same operating system inside the container.
What is Singularity?

A container uses Linux **control groups** (cgroups), kernel **namespaces**, and an **overlay filesystem**:

- cgroups **limit, control, and isolate** resource usage (e.g., RAM, disk I/O, CPU),
- kernel namespaces **virtualize and isolate** operating system resources of a **group of processes** (e.g., process and user IDs, filesystems, network access), and,
- overlay filesystems enable the **appearance of writing** to an **underlying read-only** filesystem.
What is Singularity?

For emphasis…

Singularity was specifically designed to enable containers to be used securely without requiring any special permissions especially on multi-user compute clusters.

Other container technologies, e.g., Docker, at times require various elevated permissions each with associated security risks.

For more information see:
http://singularity.lbl.gov/docs-security.
Table of Contents

- What is Singularity?
- Installing Singularity
- Loading Singularity
- Creating Images
- Using Singularity
- HPC Issues With Singularity
- Thank You and Questions
Singularity is already installed on:

- graham.computecanada.ca,
- cedar.computecanada.ca, as well as,
- some legacy clusters such as orca.sharcnet.ca.
You can install Singularity on your **own computer** as long as it is running **Linux** with a reasonably recent kernel version, e.g.,

- CentOS 6: 2.6.32 kernel (very old). Works with limitations.
- CentOS 7: 3.10.0 kernel. Works.

Instructions can be found on the Singularity web site: http://singularity.lbl.gov
Table of Contents

- What is Singularity?
- Installing Singularity
- **Loading Singularity**
- Creating Images
- Using Singularity
- HPC Issues With Singularity
- Thank You and Questions
To use Singularity on graham.computecanada.ca or cedar.computecanada.ca use one of these module commands:

- `module load singularity/2.4`
- `module load singularity/2.3`

NOTE: This presentation only discusses Singularity v2.4.
To use Singularity on orca.sharcnet.ca use one of these commands:

- `export PATH=/opt/sharcnet/singularity/2.4.0/bin:$PATH`
- `module load singularity/2.3.1`

NOTE: This presentation only discusses Singularity v2.4.
Table of Contents

- What is Singularity?
- Installing Singularity
- Loading Singularity
- Creating Images
- Using Singularity
- HPC Issues With Singularity
- Thank You and Questions
Before using Singularity, you need to create an image.

A Singularity image is either a file or a directory containing an installation of Linux.
Singularity allows one to create images by:

- downloading a container from Singularity Hub,
- downloading a container from Docker Hub,
- from a container you already have,
- from a tarball or a directory, or,
- from a Singularity recipe file.
Suppose the Singularity Hub URL for a container you want is:

```
shub://singularityhub/ubuntu
```

then you would download that container by running:

```
singularity pull shub://singularityhub/ubuntu
```

Singularity Hub URL: https://singularity-hub.org/

Only use images from Singularity Hub if you trust those images!
Suppose the Docker Hub URL for a container you want is:

docker://ubuntu

then you would download that container by running:

```
singularity pull docker://ubuntu
```

Docker Hub URL: https://hub.docker.com/

Only use images from Docker Hub if you trust those images!
If you already have a **configured Intel 64-bit version of Linux with all needed software installed**, then start by **making a tarball** of your system, e.g.,

```
sudo tar -cvpf -C / mysystem.tar \
   --exclude=/dev --exclude=/proc --exclude=/sys
```
Notice

All of the remaining steps all must be done on a system with Singularity installed.

If you need to preserve file and directory permissions, you must use a system, such as your own computer, where you have root access!

- e.g., your Linux distribution may require you to preserve permissions if you want to upgrade or install new software into the image later

If you don’t need to preserve permissions, you can run the commands on the following slides on graham, cedar, etc. —simply omit sudo when typing in the commands.
Optional: Untar the tarball in an empty directory:

```bash
sudo mkdir workdir
cd workdir
sudo tar -xvf mysystem.tar
cd ..
```

and use the interactive **shell** command to examine, delete, rename, files, directories, etc. as is appropriate for this image:

```bash
sudo singularity shell -w workdir
bash
```

When done, run the command `exit` twice to leave the interactive shell.
Finally, create the image using the **build** command from your `workdir`:

```bash
sudo singularity build myimage.simg workdir
```

or from the original tarball:

```bash
sudo singularity build myimage.simg mysystem.tar
```

and transfer the read-only Singularity image, `myimage.simg`, to a cluster with Singularity installed. :-}
Creating an Image Using A Recipe

The following Singularity recipe file:

```
copy-drive-into-container-recipe
```

1 Bootstrap: self
2 Exclude: /boot /dev /home /lost+found /media /mnt /opt /proc /run /sys

can be used to convert one’s system directly into a container with:

```
sudo singularity build self.simg copy-drive-into-container-recipe
```
The following Singularity recipe file:

```
# Bootstrap: localimage
From: ubuntu-16.04-x86_64.simg

%help
This is a modified Ubuntu 16.06 x86_64 Singularity container image.

%post
sudo apt-get -y update
sudo apt-get -y upgrade
sudo apt-get -y install build-essential git
sudo apt-get -y install python-dev python-pip python-virtualenv python-numpy python-matplotlib
sudo apt-get -y install vim
sudo apt-get clean
```

can be used to update a pre-existing Ubuntu Singularity image with this:

```
sudo singularity build new-ubuntu-image.simg update-existing-container-recipe
```
Table of Contents

- What is Singularity?
- Installing Singularity
- Loading Singularity
- Creating Images
- Using Singularity
- HPC Issues With Singularity
- Thank You and Questions
There are a number of ways to use Singularity:

1. Run a **single command** which executes and then stops running.
2. Run **many commands** in an interactive session.
3. Run a container instance to run **daemons** and have **backgrounded processes**.
 - No hung processes: everything is killed when the Singularity instance is stopped/killed!
Running Commands

Given a container image.simg with gcc installed in it, one can check the version of gcc used with the `exec` command:

```
singularity exec image.simg gcc -v
```
One can interactively use the container with the `shell` command:

```
singularity shell image.simg
```

To exit the container type `exit`.
If one needs to run backgrounded and daemon processes, use the `instance.start` and `instance.stop` commands.

By running `instance.start` and with a name, e.g., `session5`, Singularity will start a new container instance:

```
singularity instance.start image.simg session5
```
Container instances can be queried using `instance.list`, e.g.,

```
singularity instance.list
```

which will list the **daemon name**, its **PID**, and the **container image path**.
Running Commands (con’t)

Programs can be run using `exec` or `shell` as before, except the name of the instance prefixed with `instance://` and must also be specified, e.g.,

```
singularity instance.start image.simg one
singularity exec image.simg instance://one ps -eaf
singularity shell image.simg instance://one
  nohup find / -type d >dump.txt
  exit
singularity exec image.simg instance://one ps -eaf
```
An instance is **shut down** stopping all daemons, background processes, etc. by running the `instance.stop` command, e.g.,

```plaintext
singularity instance.stop image.simg session5
singularity instance.stop image.simg one
```
Per Compute Canada cluster configuration, Singularity has been set to automatically mount your /home directory.

Other mounts containing your files must be manually specified using one or more -B options to exec and shell commands.
On Compute Canada configured systems, one would normally want to mount:

- `/project`
- `/scratch`
- `/localscratch`

E.g.,

```plaintext
singularity shell -B /project -B /scratch -B /localscratch image.simg
singularity exec -B /project -B /scratch -B /localscratch \image.simg gcc /project/$USER/p.c
```
On SHARCNET legacy systems, one would normally want to mount:

- /work
- /scratch

e.g.,

```bash
singularity shell -B /work -B /scratch image.simg
gsingularity exec -B /work -B /scratch image.simg gcc /work/$USER/p.c
```
The actual locations of all mounts can be made to appear at a different location inside the container, e.g.,

```bash
mkdir /localscratch/tmp/$USER
singularity shell -B /localscratch/tmp/$USER:/tmp image.simg
```

i.e., inside the container `/tmp` is actually the directory:

```
/localscratch/tmp/$USER
```

outside the container.
Table of Contents

- What is Singularity?
- Installing Singularity
- Loading Singularity
- Creating Images
- Using Singularity
- HPC Issues With Singularity
- Thank You and Questions
If you are running software that needs access to the NVIDIA GPUs on the node, pass the
--nv to the Singularity exec option, e.g.,

 singularity exec --nv image.simg python3 ./tensorflow/label_image.py
Message Passing Interface (MPI):

- Work has been done to integrate Singularity with OpenMPI v2.1.x.
- Running an MPI installation across nodes requires either:
 - installing and configuring OpenMPI v2.1.x with all required networking fabrics inside the container, or,
 - bind-mounting the system’s OpenMPI and network fabric libraries into the container.

 NOTE: There may be various incompatibility issues with library and glibc versions being used with this method.

Additional information: http://singularity.lbl.gov/docs-hpc.
Table of Contents

- What is Singularity?
- Installing Singularity
- Loading Singularity
- Creating Images
- Using Singularity
- HPC Issues With Singularity

- Thank You and Questions
Thank you and questions. :-)