Numerical Libraries for Scientific Computing

April 1, 2015

Ge Baolai
SHARCNET
Faculty of Science
Western University

Topics

- Numerical libraries for scientific computing
- Numerical libraries at SHARCNET
- Examples
 - Linear algebra
 - FFTW
 - ODE solvers
 - Optimization
 - GSL
 - Multiprecision with MPFUN
 - PETSc (PDE solvers)
- Q&A
Overview
Numerical Libraries

Numerical Computing

- Linear algebra
- Nonlinear equations
- Optimization
- Interpolation/Approximation
- Integration and differentiation
- Solving ODEs
- Solving PDEs
- FFT
- Random numbers and stochastic simulations
- Special functions
Numerical Libraries

More fundamental problems:

- Linear algebra
- Nonlinear equations
- Numerical integration
- ODE
- FFT
- Random numbers
- Special functions
Numerical Libraries

Top Ten Algorithms for Science (Jack Dongarra 2000)

1. Metropolis Algorithm for Monte Carlo
2. Simplex Method for Linear Programming
3. Krylov Subspace Iteration Methods
4. The Decompositional Approach to Matrix Computations
5. The Fortran Optimizing Compiler
6. QR Algorithm for Computing Eigenvalues
7. Quicksort Algorithm for Sorting
8. Fast Fourier Transform
9. Integer Relation Detection
10. Fast Multipole Method
Linear Algebra
Common Linear Algebra Operations

- Basic linear algebra operations
- Solving linear systems $Ax = b$ via LU decomposition.
- Solving linear spd systems $Ax = b$, A spd, via Cholesky factorization.
- Solving least squares problem $\min \|b - Ax\|_2$ via QR algorithms.
- Solving eigenvalue problems $Ax = \lambda x$ via QR factorization.
- Solving generalized eigenvalue problems $Ax = \lambda Bx$.
- Calculating singular value decomposition $A = U\Sigma V^T$ via QR factorization.
- Solving linear systems via iterative methods.
- Krylov subspace methods (KSM), e.g. CG (converge guaranteed), BCG, QMR, GMRES, BiCGstab, CGS, etc. alone, might be slow.
- Commonly used along with preconditioning: $M^{-1}Ax = M^{-1}b$ as finding an approximate inverse of the original matrix. KSM with preconditioning is referred to KSP in PETSc.
Numerical Libraries

Most commonly used linear algebra libraries

- **LINPACK** (1970s), succeeded by LAPACK.
- **EISPACK** (1970s), succeeded by LAPACK.
- **LAPACK** – Free Fortran subroutines, some C/C++ APIs available, variants:
 - ATLAS – automatically tuned linear algebra systems.
 - **ACML** (AMD).
 - CXML (Compaq diseased), ESSL (IBM), SCSL (SGI), etc.
 - **IMSL** (40+ old, now owned by Rogue Waves).
 - MLIB (HP).
 - **MKL** (Intel).
 - **NAG** (Numerical Algorithms Group), etc.
- **SuperLU** – Sparse direct solvers.
- **ScaLAPACK** – LAPACK for distributed systems.
- **SPAI** – Sparse approximate inverse.
- **PETSc + SLEPc** – iterative solvers, eigen solvers.
Numerical Libraries

LAPACK

- BLAS level 1, 2 and 3 routines for basic linear algebra operations. The most famous one and studied extensively for high performance computing is matrix-matrix multiplication **DGEMM**. A famous name associated with DGEMM is **Goto Kazushige 後藤 和茂**, a Japanese researcher who devoted his life to making the world’s fastest matrix-matrix multiplication code, used to benchmark world’s fastest computers. Goto used ship stand alone DGEMM routines, often known as Goto library, best tuned for the target hardware, usually beats any other implementations!

- Drivers for solving various problems.

- In addition to math operands, most routines has auxiliary tuning parameters that one can fine tune to achieve the optimal performance on the target hardware.

- Freely available in Linux distributions.

- Originally written in Fortran 77, callable from Fortran 90, C/C++. C/C++ interfaces are available.

- For dense matrices only, not for sparse matrices.

- Does not include iterative solvers.
Numerical Libraries

Linear algebra libraries (cont’d)

- **ARPACK** – A collection of Fortran 77 subroutines for solving large scale eigenvalue problems using ARnoldi methods.
 - Allow to compute a few eigenvalues with users specified features.
 - Underlying solver used by MATLAB, Octave, Scilib and R, etc.
 - It can use any matrix storage format, with matrix operations done through “reverse communication interface” (RCI) to the calling procedure.
 - **ARPACK++** - C++ interface to ARPACK; **PARPACK** – Parallel ARPACK.
 - Minor modifications needed to install.

Alternatives:

- **BLOPEX**
- **PRIMME** – See a survey on eigenvalue solvers (Andreas Stathopoulos, 2006)
- **PETSc+SLEPc**

- **FEAST** – Fast, high performance eigensolver, already integrated into intel MKL 11.x
 - Includes both ready to use interfaces and RCI interfaces
 - Can compute all eigenvalues and eigenvectors for given search interval
Numerical Libraries

Linear algebra libraries (cont’d)

- **PARDISO** – Package for solving dense and sparse linear systems.
- **Aztec** – For solving large linear sparse systems.
- **MUMPS** – A massive parallel direct sparse solver.
- **Hypre** - A library for solving large, sparse linear systems, using common **Krylov** subspace based methods. Contains a suite of **preconditioners**.

See also collections, e.g.:

- Intel MKL
- GSL
- Boost.Numerics
- Apache Commons Math (mostly java?)
Numerical Libraries

Example: Solving linear system $Ax = b$ using LU decomposition. Let

\[A = LU \]

then $LUx = b$, we solve

\[Ly = b, \quad Ux = y. \]

This can be all done by one LAPACK subroutine \texttt{xGESV}

\[
\text{call dgesv}(n, \text{num}_\text{rhs}, A, \text{LDA, ipiv, x, LDA, info})
\]
Examples

Example: (Cont’d) A by-product, we can compute the determinant of a matrix. For an n-by-n matrix, the determinant is defined as

$$\det(A) = \sum_{j_1, j_2, \ldots, j_n} (-1)^{\sigma(j_1, j_2, \ldots, j_n)} a_{ij_1} a_{ij_2} \cdots a_{ij_n}$$

where $\sigma(j_1, j_2, \ldots, j_n)$ denotes the permutation of column indices.

Alternatively, via LU decomposition $A = PLU$

$$\det(A) = \det(P) \det(L) \det(U) = (-1)^{\sigma} \det(U)$$

This can be done with LAPACK subroutine xGETRF (with x = d for double precision)

```
call dgetrf(n, n, A, LDA, ipiv, info)
```

The permutation of rows is stored in ipiv: ipiv[i] contains the index of row that is swapped with row i.
Examples

Example: Compute the eigenvalues $Ax = \lambda x$. Wilkinson test matrix: An n-by-n tridiagonal matrix, with diagonal elements

$$
\frac{n - 1}{2}, \frac{n - 3}{2}, \frac{n - 5}{n}, \ldots, \frac{n - 5}{n}, \frac{n - 3}{2}, \frac{n - 1}{2}
$$

and 1’s on off diagonals. The Wilkinson matrix of order seven looks as follows

$$
A = \begin{bmatrix}
3 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
\end{bmatrix}
$$

The Wilkinson test matrix has a property that it has seeming the same eigenvalues in pairs, but they are really not the same. This may lead to the demand for higher precisions.
Example: Wilkinson matrix (cont’d). The LAPACK routine to use is

```
call dstev('n', N, D, T, Z, DMAX, work, info)
```

On entry
- D – Vector containing the diagonal elements.
- T – Vector containing the off diagonal elements.

On return
- D – Contains eigenvalues.
- Z – Contains eigenvectors.
Examples

Example: Compute selected eigenvalues and eigenvectors of generalized symmetric positive definite eigenproblems

\[Ax = \lambda B x \]

This can be done by the LAPACK subroutine \texttt{xSPGVX}, e.g.

```fortran
call dspgvx( 1, 'N', 'I', 'U', n, A, B, VL, VU, iL, iU, 1, atol, &
              num_eigs, eigs, eigv, 1, work, iwork, ifail, info )
```

But alternatively, we can separate the solution to (1) into two steps. Let \[B = LU \], then we can write

\[Ax = \lambda LU \]

\[\Rightarrow L^{-1} Ax = \lambda U x \quad \Rightarrow L^{-1} AU^{-1} U x = \lambda U x \]

or

\[L^{-1} AU^{-1} y = \lambda y, \]
\[U x = y. \]
Remarks:

- The original generalized eigenvalue problem is separated into two problems: Part 1: LU (or Cholesky for spd matrices) factorization and Part 2: Solving a regular eigenvalue problem.
- Profiling the implementation of Part 1 and Part 2 shows 55+% vs. 45-% on execution time
- “…It does the transformation from the Generalized Eigenvalue Problem to the Standard Eigenvalue Problem, using a new DAG algorithm and OpenMP. The Speed up for a 7000 by 7000 matrix is 1000 ! Yes 1000 times faster compared to the EISPACK routines which cannot be parallelized because of the data dependencies in the Cholesky algorithm.” – Nick Chepurniy (former SHARCNET staff).
Multiprecision Packages
Example: Compute the eigenvalues of Wilkinson test matrix with higher than IEEE double precision.

The Wilkinson test matrix has a property that it has seemingly the same eigenvalues in pairs.

Really? This is where we need higher or arbitrary precisions.

For arbitrary precisions, two packages to consider:

- **GMP** (C/C++ interface)
- **MPFUN** (Fortran) or **ARPREC** (C++ implementation with C/C++ and Fortran interfaces)
Examples

Fortran code using MPFUN

program steig
 use mpmodule
 implicit none
 type (mp_real), allocatable :: d(:,), t(:,), work(:,), z(:,:)
 integer :: info, integer :: i, n, m, num_digits

 print *, 'Enter matrix size:'
 read *, n
 print *, 'Enter accuracy (number of digits):'
 read *, num_digits
 call mpinit(num_digits)
 call mpsetoutputprec(num_digits)

 allocate(d(n), t(n), z(n,n), work(2*n-2))

 create Wilkinson eigenvalue test matrix

 call imtql1(n, d, t, info)
 print *, 'Eigenvalues (Using EISPACK):'
 do i = 1, n
 call mpwrite(6, c(i))
 end do
end program steig

EISPACK subroutine

! This QL algorithm was written in the 1969s...
! We don't want to rewrite it!

subroutine imtql1(n,d,e,ierr)
 use mpmodule
 integer i,j,l,m,n,ii,mml,ierr
 type (mp_real) d(n),e(n)
 type (mp_real) b,c,f,g,p,r,s,tst1,tst2

 c c this subroutine is a translation of the algol procedure
 c imtql1, num. math. 12, 377-383(1968) by martin and
 c wilkinson,
 c

 return
end

With little effort – **three lines only** in this case – I was able to compute eigenvalues to arbitrary digits!

This example also shows the simplicity of Fortran superior to other languages for scientific computing.
Example: Computing eigenvalues of Wilkinson matrix of order n using double (15) and 40 digits

<table>
<thead>
<tr>
<th>Order n</th>
<th>Example Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-1 \times 0.96413217269049067</td>
</tr>
<tr>
<td>20</td>
<td>-1 \times 0.1262842513011027</td>
</tr>
<tr>
<td>30</td>
<td>-1 \times 0.5791429311031924</td>
</tr>
<tr>
<td>40</td>
<td>-1 \times 0.96413217269049067</td>
</tr>
<tr>
<td>50</td>
<td>-1 \times 0.1262842513011027</td>
</tr>
<tr>
<td>60</td>
<td>-1 \times 0.5791429311031924</td>
</tr>
<tr>
<td>70</td>
<td>-1 \times 0.96413217269049067</td>
</tr>
<tr>
<td>80</td>
<td>-1 \times 0.1262842513011027</td>
</tr>
<tr>
<td>90</td>
<td>-1 \times 0.5791429311031924</td>
</tr>
<tr>
<td>100</td>
<td>-1 \times 0.96413217269049067</td>
</tr>
</tbody>
</table>
Example: Computing eigenvalues of Wilkinson matrix of order n using 40 and 60 digits

Example:

\[10 \times 10^0 \times 8.500000000493206776034519049845471826179933195, \]
\[10 \times 10^1 \times 2.524619418290372083765587567227582010492785, \]
\[10 \times 10^2 \times 1.049999999999993785719572185114248024948923242612487024077, \]
\[10 \times 10^3 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^4 \times 1.050000000000006350232906988386519573673595902175, \]
\[10 \times 10^5 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^6 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^7 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^8 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^9 \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{10} \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{11} \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{12} \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{13} \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{14} \times 1.45000000000000057424636180389679243092887905027, \]
\[10 \times 10^{15} \times 1.45000000000000057424636180389679243092887905027, \]
Nonlinear Equations
Nonlinear Equations – finding “zeros” of

\[f(x) = 0 \]

Common solvers:

- **PETSc** – e.g. Newton-Krylov method.
- **MINPACK**
- **TAO** – Toolkit for Advanced Optimization (Argonne).
- **Harwell Subroutine Library (HSL)** – A collection of state-of-the-art Fortran code for large scale scientific computing, developed by NAG and others.
- **IMSL**
- **NAG**

See also in PDEs later.
Examples

Example: Solving nonlinear equation using PETSc. For nonlinear equation

\[F(x) = 0, \quad x \in \mathbb{R}^n. \]

Let \(x^{(i)} \) be the approximation and \(\Delta x \) a correction such that \(F(x^{(i)} + \Delta x) = 0 \). By Taylor expansion

\[F(x^{(i)} + \Delta x) = 0 = F(x^{(i)}) + F'(x^{(i)}) \Delta x + O(\Delta x^2) \]

we have the **Newton** approximation

\[F'(x^{(i)}) \Delta x = -F(x^{(i)}) \quad (1) \]

\[x^{(i+1)} = x^{(i)} + \Delta x \quad (2) \]

Eq. (1) is mostly solved using **Krylov** subspace method.

When solving PDEs, we often end up with a system of nonlinear equations.
Optimization
Numerical Libraries

Optimization Problems

$$\min_x f(x), \ \text{s.t. } g(x) = 0, \ \text{and, } h(x) \leq 0.$$

Commonly used packages

- **APPSPACK (-> HOPSPACK)** – Asynchronous parallel pattern search with derivative free, by Sandia National Laboratory
- **GSL**
- **NAPACK**
- **MINPACK**
- **OPT++** – An OO nonlinear optimization library (Sandia).
- **TAO** – Toolkit for Advanced Optimization (Argonne).
- **HSL** (Harwell Subroutine Library)
- **IMSL**
- **NAG**
Examples

Example: Data fitting with nonlinear least squares

\[f(x; a, b, \lambda) = a \exp(-\lambda x) + b \]

to fit observation data \(y_i \) with uncertainty \(\sigma_i \). The goal is to find parameters \(a, \lambda \) and \(b \) such that

\[\chi(a, b, \lambda)^2 = \sum_{i=1}^{n} \left(\frac{y_i - f(x_i; a, b, \lambda)}{\sigma_i} \right)^2. \]

Two methods are commonly used, both work well

- Levenberg-Marquardt – requires computing the derivatives.
- Nelder-Mead – simplex search method, does not require to compute derivative information.
- Both methods are available in GSL.
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>
#include "expfit.c"
#define N 40
void print_state (size_t iter, gsl_multifit_fdfsolver * s);

int main (void) {
 const gsl_multifit_fdfsolver_type *T;
 gsl_multifit_fdfsolver *s;
 int status; unsigned int i, iter = 0;
 const size_t n = N;
 const size_t p = 3;
 gsl_matrix *covar = gsl_matrix_alloc (p, p);
 double y[N], sigma[N];
 struct data d = { n, y, sigma};
 gsl_multifit_function_fdf f;
 double x_init[3] = { 1.0, 0.0, 0.0};
 gsl_vector_view x = gsl_vector_view_array (x_init, p);
 const gsl_rng_type * type;
 gsl_rng * r;
 gsl_rng_env_setup();
type = gsl_rng_default;
r = gsl_rng_alloc (type);

 f.f = &expb_f;
 f.df = &expb_df;
 f.fdf = &expb_fdf;
 f.n = n;
 f.p = p;
 f.params = &d;

 T = gsl_multifit_fdfsolver_lmsder;
s = gsl_multifit_fdfsolver_alloc (T, n, p);
gsl_multifit_fdfsolver_set (s, &f, &x.vector);
print_state (iter, s);

 do {
 iter++;
 status = gsl_multifit_fdfsolver_iterate (s);
 printf("status = %s\n",
gsl_strerror (status));
 print_state (iter, s);
 if (status) break;
 status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4);
 } while (status == GSL_CONTINUE && iter < 500);

… …
Example: The use of Nelder-Mead simplex method to search the minimum

```c
int main(void)
{
    double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0};
    const gsl_multimin_fminimizer_type *T =
        gsl_multimin_fminimizer_nmsimplex2;
    gsl_multimin_fminimizer *s = NULL;
    gsl_vector *ss, *x;
    gsl_multimin_function minex_func;
    size_t iter = 0;
    int status; double size; /* Starting point */
    x = gsl_vector_alloc (2);
    gsl_vector_set (x, 0, 5.0);
    gsl_vector_set (x, 1, 7.0); /* Set initial step sizes to 1 */
    ss = gsl_vector_alloc (2);
    gsl_vector_set_all (ss, 1.0); /* Initialize method and iterate */
    minex_func.n = 2;
    minex_func.f = my_f;
    minex_func.params = par;
    s = gsl_multimin_fminimizer_alloc (T, 2);
    gsl_multimin_fminimizer_set (s, &minex_func, x, ss);

do {
    iter++;
    if (status = gsl_multimin_fminimizer_iterate (s)) break;
    size = gsl_multimin_fminimizer_size (s);
    status = gsl_multimin_test_size (size, 1e-2);
    if (status == GSL_SUCCESS) { printf ("converged to minimum at\n\n");
        printf ("%5d %10.3e %10.3e f() = %7.3f size = %.3f
", iter,
            gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->fval, size);
    }
    while (status == GSL_CONTINUE && iter < 100);
    … …
    return status;
}
```

Example from GSL
Integration
Numerical Libraries

Numerical Integration

\[I = \int \cdots \int_D f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n, \quad D \subseteq \mathbb{R}^n \]

Commonly use software packages

- **QUADPACK**
- **GSL** – Using QUADPACK (reimplemented) and Monte-Carlo based.
- **Cuba** – A library for multidimensional integrations on \([0, 1]^n\), containing
 - One unified interface to three Monte-Carlo based (Vegas, Suave, Divonne) using different sampling schemes, and one deterministic (Cohre) algorithms;
 - Written in C, has C/C++, Fortran and Mathematica interfaces;
 - Parallelization capable on multicore (shared memory) architecture.
- **IMSL**
- **NAG**
- **HSL**
Numerical Libraries

Matlab

\[I = \text{dblquad}(\@ (x,y) \cos(4 \cdot x - 3 \cdot y + 2 \cdot \pi), 0,1,0,1) \]

Via Cuba

! The calling routine

```matlab
... ...
```
call `cuba`(method, ndim, ncomp, integrand, &
 `integral`, error, prob)

... ...

! User defined integrand \(f(x, \ldots) \)

```matlab
integer function `integrand`(ndim, xx, ncomp, f)
  implicit none
  integer ndim, ncomp
  double precision xx(*), ff(*)
  parameter (pi = 3.14159265358979323846D0)

  x = xx(1)
  y = xx(2)
  f(1) = \cos(4.0 \cdot 0 \cdot x - 3.0 \cdot 0 \cdot y + 2.0 \cdot \pi)
  Integrand = 0
end function integrand
```

\[I = \int_0^1 \int_0^1 \cos(4x - 3y + 2\pi) \, dx \, dy \]
ODE Solvers
Numerical Libraries

ODEs

\[
\frac{dy}{dt} = f(t, y), \quad y(0) = y_0
\]

Commonly used packages

- odeint (Boost C++ Libraries)
- Intel ODE solvers
- SUNDIALS – A suite of solvers, parallel processing ready.
- ODELPACK
- GSL
- IMSL
- NAG
- HSL
Numerical Libraries

ODE solvers – functional components

- The **function** – to evaluate the right-hand-side $f(t,y)$
- The “**stepper**” – integration scheme, e.g. explicit, implicit methods
- The **Jacobian** of $f(t,y)$ – when implicit methods are employed, there might be a need to compute the Jacobian at each time step.
Numerical Libraries

ODEs (cont'd)

- **Boost.Numeric.Odeint**
 - C++ interface, simple and clean
 - User to provide RHS, and Jacobian if necessary
 - Contains a number of integration schemes — **steppers** (including multistep and adaptive step control schemes) — and also allow user to supply a stepper as well
 - Can be used to solve stiff ODEs.

Example

Lorenz system

\[
\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= Rx - y - xz \\
\dot{z} &= -bz + xy
\end{align*}
\]

```cpp
#include <iostream>
#include <boost/array.hpp>
#include <boost/numeric/odeint.hpp>

using namespace std;
using namespace boost::numeric::odeint;

const double sigma = 10.0;
const double R = 28.0;
const double b = 8.0 / 3.0;

typedef boost::array< double , 3 > state_type;

void lorenz( const state_type &x , state_type &dxdt , double t )
{
    dxdt[0] = sigma * ( x[1] - x[0] );
    dxdt[1] = R * x[0] - x[1] - x[0] * x[2];
}

void write_lorenz( const state_type &x , const double t )
{
    cout << t << ' ' << x[0] << ' ' << x[1] << ' ' << x[2] << endl;
}

int main(int argc, char **argv)
{
    state_type x = { 10.0 , 1.0 , 1.0 }; // initial conditions
    integrate( lorenz , x , 0.0 , 25.0 , 0.1 , write_lorenz );
}
```
Numerical Libraries

ODEs (cont'd)

- Intel ODE solver (NOT part of MKL)
 - Fortran, C/C++ interfaces;
 - User to provide RHS and Jacobian;
 - Contains different steppers;
 - Considered effective for stiff ODEs.

```
#include <stdio.h>
#include "intel_ode.h"

int main(void)
{
  int n, ierr, i;
  int kd[3], ipar[128]; // Set ipar size to 128
  double t_0, t, t_end, h_0, h, hm, ep, tr;
  double y[3], dpar[39]; // dpart size: max(13*n,(7+2*n)*n)=max(39,39)=39
  for (i=0;i<128;i++) ipar[i]=0;

  // Set initial conditions
  read_data(&n, &t_0, &t_end, &h_0, &hm, &ep, &tr, y);

  // Solve ODE using implicit solver, with output of intermediate values
  t = t_0;
  h = h_0;
  printf("Solution repeated:\n");
  printf("%g,%g,%g,%g,%g\n",t,h,y[0],y[1],y[2]);
  do
  {
    ipar[2] = 1; // To use Merson’s multistep method
    ipar[3] = 1; // To exit after each step (for intermediate values)
    ipar[4] = 1; // To use provided Jacobian function
    dodesol_mk52lfn(
      ipar,&n,&t,&t_end,y,f,df, &h,&hm,&ep,&tr,dpar,kd,&ierr
    );
    printf("%g,%g,%g,%g,%g\n",t,h,y[0],y[1],y[2]);
  } while (t < t_end);
  return 0;
}
```

Example

A stiff problem

\[
\begin{align*}
\dot{x} &= -0.013x - 1000xz, \\
\dot{y} &= -2500y, \\
\dot{z} &= -0.013x - 1000xz - 2500yz.
\end{align*}
\]

```
void f(int *n, double *t, double *y, double *dydt)
{
  dydt[0] = -0.013*y[0] - 1000.0*y[0]*y[2];
  dydt[1] = -2500.0*y[1]*y[2];
  dydt[2] = -0.013*y[0] - 1000.0*y[0]*y[2] - 2055.0*y[1]*y[2];
}

void df(int *n, double *t, double *y, double *jac)
{
  jac[0] = -0.013 - 1000.0*y[2];
  jac[1] = 0.0;
  jac[2] = -0.013 - 1000.0*y[2];
  jac[3] = 0.0;
  jac[4] = -2500.0*y[2];
  jac[5] = -2055.0*y[2];
  jac[6] = -1000.0*y[0];
  jac[7] = -2500.0*y[1];
  jac[8] = -1000.0*y[0] - 2055.0*y[1];
}
```
Numerical Libraries

SUNDIALS – A suite of nonlinear differential/algebraic solvers

- **CVODE** – solves initial value problems for ordinary differential equation (ODE) systems.
- **CVODES** – solves ODE systems and includes sensitivity analysis capabilities (forward and adjoint).
- **IDA** – solves initial value problems for differential-algebraic equation (DAE) systems.
- **IDAS** – solves DAE systems and includes sensitivity analysis capabilities (forward and adjoint).
- **KINSOL** – solves nonlinear algebraic systems.

https://computation.llnl.gov/casc/sundials/main.html
PDE Solvers
Numerical Libraries

PDEs – closely related to the solution of linear systems, e.g. discretizing the equation

\[f(x, y, z, u_{xx}, u_{yy}, u_{zz}, u_{xy}, u_{yz}, u_{xz}, u_x, u_y, u_z) = 0 \]

results in linear or nonlinear system of equations.

Commonly used packages
- **PETSc** – A popular toolkit, parallel processing ready. Works on nonlinear/linear systems often derived from numerical discretization of PDE or system of PDEs.
- **IMSL**
- **NAG**
- **Diffpack**
- **ANSYS**
- **COMSOL**
- **OpenFOAM**
- ...
Examples

Example: (Cont'd) Suppose we end up with a nonlinear system

\[F(x) = 0, \quad x \in \mathbb{R}^n. \]

Let \(x^{(i)} \) denote the approximation of the discrete values of unknown function from the discretization of the PDE on a grid, we are to solve

\[F'(x^{(i)}) \Delta x = -F(x^{(i)}), \quad (1) \]
\[x^{(i+1)} = x^{(i)} + \Delta x. \quad (2) \]

The linear system Eq. (1) is solved using Krylov subspace method.

We use PETSc to solve the nonlinear system. We need at the minimum the following storage and function evaluations:

- X – solution vector
- R – residual vector, containing F(X)
- J – the Jacobian F'(X)

Optionally PETSc lets users define

- Krylov method
- preconditioner
Example

#include "petscsnes.h"

34: int main(int argc,char **argv)
35: {
36: SNES snes; // nonlinear solver context
37: KSP ksp; // linear solver context
38: PC pc; // preconditioner context
39: Vec x,r; // solution, residual vectors
40: Mat J; // Jacobian matrix
41: PetscInt its;
42: PetscMPIInt size,rank;
43: PetscScalar pfive = .5,*xx;
44: PetscTruth flg;
45: AppCtx user; // user-defined work context
46: IS isglobal,islocal;
47: PetscInitialize(&argc,&argv,(char *)0,help);
48: MPI_Comm_size(PETSC_COMM_WORLD,&size);
49: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
50: // Create nonlinear solver context
51: SNESCreate(PETSC_COMM_WORLD,&snes);
52: // Create solutions objects
53: VecCreate(PETSC_COMM_WORLD,&x);
54: VecSetSizes(x,PETSC_DECIDE,2);
55: VecDuplicate(x,&r);
56: if (size > 1){
57: Setup for distributed processing
58: }
59: // Create Jacobian matrix data structure
60: MatCreate(PETSC_COMM_WORLD,&J);
61: MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,2,2);
62: MatSetFromOptions(J);
63: PetscOptionsHasName(PETSC_NULL,"-hard",&flg);
64: if (!flg) {
65: SNESSetFunction(snes,r,FormFunction1,&user);
66: SNESSetJacobian(snes,J,J,FormJacobian1,PETSC_NULL);
67: } else {
68: if (size != 1)
69: SETERRQ(1,"This case is a uniprocessor example only!");
70: SNESSetFunction(snes,r,FormFunction2,PETSC_NULL);
71: SNESSetJacobian(snes,J,J,FormJacobian2,PETSC_NULL);
72: }
73: // Customize nonlinear solver; set runtime options
74: SNESGetKSP(snes,&ksp);
75: KSPGetPC(ksp,&pc);
76: PCSetType(pc,PCNONE);
77: KSPSetTolerances(ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,20);
78: // Set SNES/KSP/KSP/PC runtime options
79: SNESSetFromOptions(snes);
// Evaluate initial guess; then solve nonlinear system
if (!flg) {
 VecSet(x,pfive);
} else {
 VecGetArray(x,&xx);
 xx[0] = 2.0; xx[1] = 3.0;
 VecRestoreArray(x,&xx);
}

SNESSolve(snes,PETSC_NULL,x);
SNESGetIterationNumber(snes,&its);
if (flg) {
 Vec f;
 VecView(x,PETSC_VIEWER_STDOUT_WORLD);
 SNESGetFunction(snes,&f,0,0);
 VecView(r,PETSC_VIEWER_STDOUT_WORLD);
}
PetscPrintf(PETSC_COMM_WORLD,"number of Newton iterations = %D\n\n",its);

// Free work space
VecDestroy(x); VecDestroy(r);
MatDestroy(J); SNESDestroy(snes);
if (size > 1){
 VecDestroy(user.xloc);
 VecDestroy(user.rloc);
 VecScatterDestroy(user.scatter);
}
PetscFinalize();
return 0;

Summary

- PETSc’ uses the following key opaque objects:
 - SNES - Solver object;
 - KSP - KSP object;
 - PC - Preconditioning object;

- PETSc also defines opaque matrix and vector types. Need interface routines to set and get values.

- User to define the computational grid.

- User to define routines for evaluating the function F(x) and Jacobian F’(x) as CALLBACK functions installed in SNES object.

- The solving procedure is self contained in the call to SNESSolve().

- Built with parallel processing enabled.
Numerical Libraries

FFT – The best choice is *FFTW*

- C/C++, Fortran interfaces;
- Used by Matlab, Octave, R, etc;
- For both serial and parallel processing – threaded and MPI.
Numerical Libraries

Example – 1d signal processing via **FFTW**

Input

\[x(t) = 0.7 \sin(2\pi 50t) + \sin(2\pi 120t) + r \]

Output

\[X(\omega) = FFT(x(t)) \]
Matlab

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector

% Create signal vector: Two sinusoid corrupted by noise
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t) + 2*randn(size(t));

figure(1)
plot(Fs*t(1:100),x(1:100))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
input('Press ENTER key to continue');

% Performa FFT on vector x, output is y
NFFT = 2^nextpow2(L); % Next power of 2 from length of x
y = fft(x,NFFT)/L;

% Plot single-sided amplitude spectrum.
f = Fs/2*linspace(0,1,NFFT/2+1);
figure(2)
plot(f,2*abs(y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of x(t)')
xlabel('Frequency (Hz)')
ylabel('|X(f)|')
input('Press ENTER key to continue');

Fortran

program fftw_signal
use fftw
use graphics
implicit none
integer, parameter :: dp=kind(1.0d0)
real, parameter :: PI=3.14159265358979323846
integer :: k = 1024 ! Sampling frequency
real(dp) :: time ! Sample time
integer :: i, n = 1024 ! Length of signal
real(dp) :: t(1024), f(1024), x(1024), noise(1024)
complex(dp) :: y(1024)
integer(8) :: plan

! Create time vector
time = 1.0/k
t = (/(i,i=0,n-1)/)*time

! Create signal vector: Two sinusoids corrupted by noise
call randn(noise)
x = 0.7*sin(2*PI*50*t) + sin(2*PI*120*t) + 2*noise

call plot(k*t(1:100),x(1:100))

! Perform FFT on vector x, output is y
call dfftw_plan_dft_r2c_1d(plan, n, x, y, FFTW_ESTIMATE)
call dfftw_execute_dft_r2c(plan, x, y)
call dfftw_destroy_plan(plan)
y = y/k

! Create frequence vector
f = 0.5*k*./(i,i=0,n-1)//(n/2+1)
call plot(f,2*abs(y(1:n/2+1)),ymax=1.0d0,xlabel='Freq',ylabel='Amplitude')
end program fftw_signal
Numerical Libraries

FFTW functions
- `fftw_plan xfftw_plan_type_dim (fftw_plan plan, int n, fftw_dtype *in, fftw_dtype *out, unsigned flag)`
- `void xfftw_execute_type (fftw_plan plan, in, out)`
- `void xfftw_destroy_plan (fftw_plan plan)`

Example
- `dfftw_plan_dft_r2c_1d(plan, n, x, y, FFTW_ESTIMATE)`
- `dfftw_execute_dft_r2c(plan, x, y)`
- `dfftw_destroy(plan)`
- `... ...`
- `dfftw_execute_dft_c2r(plan, x, y)`
- `... ...`
Random Number Generators
Numerical Libraries

Random Number Generators

- **GSL** – has a collection of high quality RNGs:
 - 60+ RNGs;
 - 40+ distributions;
 - Easy to use, callable from C/C++ and Fortran.

- **SPRNG** – Scalable parallel random number generators library.
 - Work with MPI
 - Currently has uniform distribution only.

- **RANLIB** – Fortran/C libraries from netlib.

- **HSL**
- **IMSL**
- **NAG**
Numerical Libraries

Example: Random number generation using GSL

- GSL includes a set of high quality RNGs, set by the call to `gsl_rng_alloc(type)`
- The usage of GSL RNGs is relatively simple, involving the following

```c
#include <gsl/gsl_rng.h> // GSL RNG headers
#include <gsl/gsl_randist.h> // Different random number distributions

rng_h = gsl_rng_alloc(gsl_rng_mt19937); // E.g. to use the MT-19937 algorithm, default

// Set seed

r = gsl_rng_uniform(rng_h); // Call to get the next random number
r = gsl_rng_uniform_pos(rng_h); // Return a positive number
r = gsl_rng_uniform_int(rng_h, N); // Return an integer between 0 and N-1

or

r = gsl_ran_poisson(rng_h, λ); // Get the next random number
r = gsl_ran_gaussian(rng_h, σ); // Get the next from Gaussian distribution with var=1.0
```
Examples

Example: Generating random numbers from Poisson distribution using GSL

```c
#include <stdio.h>
#include <time.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

const gsl_rng *rng_h; /* global rand number generator */

int main (int argc, char *argv[]) {
    unsigned long seed;
    int i, k, n = 10;
    double lambda = 3.0;

gsl_rng_set (rng_h, seed); /* seed the RNG */

    for (i = 0; i < n; i++) {
        k = gsl_ran_poisson (rng_h, lambda);
        printf (" %u", k);
    }

    return 0;
}
```

Example: An Fortran implementation of `randn()` using GSL

```fortran
subroutine randn(r)
    implicit none
    integer, parameter :: dp=kind(1.0d0)
    real(dp) :: r(:)
    integer :: n

    n = size(r)
    call crandn (n, r)
end subroutine randn
```

Fortran interface

```c
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

double crandn_ (int *n, double *ra)
{
    int i;
    const gsl_rng_type * T;
    gsl_rng * r;

    gsl_rng_env_setup();
    T = gsl_rng_default;
    r = gsl_rng_alloc (T);

    for (i = 0; i < *n; i++)
        ra[i] = gsl_ran_gaussian(r, 1.0);

    return 0;
}
```

C code
Examples

SPRNG: Some properties:

- Supports both serial and parallel programs.
- Several RNGs are employed. For instance, 48-bit linear congruential generator
 \[x(n) = a \times x(n-1) + p \mod M \]
 where \(a\) is a constant, \(p\) is a prime number and \(M = 2^{48}\).
- It lets users to choose what to use via the call to `init_sprng(seed, SPRNG_DEFAULT, rng_type)`
- It has all the serial RNGs’ properties.
- It can generate multiple *streams* in parallel that are not correlated.
- Same “*seed*” – encoding of *starting state*, can generate distinct streams. This is convenient for users!
- Slightly different interfaces: serial vs. MPI and simple vs. default.
- Checkpoint capable.
- Unlike GSL, it does not come with functions for variety of distributions.
Examples

C++

```
#include <iostream>
#include <mpi.h>
#define SIMPLE_SPRNG
#define USE_MPI // use MPI to find number of processes
#include "sprng.h"
#define SEED 985456376
using namespace std;

int main(int argc, char *argv[]) {
    double rn; int i, myid, gtype;
    MPI::Init(argc, argv); /* Initialize MPI */
    myid = MPI::COMM_WORLD.Get_rank();
    if(myid == 0) {
        #include "gen_types_menu.h"
        set rng;
    }
    MPI::COMM_WORLD.Bcast(&gtype,1,MPI::INT,0)
    init_sprng(SEED,SPRNG_DEFAULT,gtype);
    for (i=0;i<10000;i++) {
        rn = sprng();
        perform calculations
    }
    MPI::Finalize();
    return 0;
}
```

Fortran

```
program sprngf_mpi
    implicit none
    #define SIMPLE_SPRNG ! simple interface
    #define USE_MPI ! use MPI to find number of processes
    use mpi
    #include "sprng_f.h"
    SPRNG_POINTER:: junkPtr
    real(8):: rn
    integer:: seed, i, myid, ierr, junk, rng

    call MPI_INIT(ierr)
    call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
    seed = 985456376
    if (myid .eq. 0) then
        #include "genf_types_menu.h"
        set rng
    endif
    call MPI_BCAST(rng, 1, MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
    junkPtr = init_sprng(seed,SPRNG_DEFAULT,rng)
    do i = 1, 10000
        rn = sprng()
        perform calculations
    enddo
    call MPI_FINALIZE(ierr)
end program sprngf_mpi
```
Multipurpose Libraries
Numerical Libraries

AMD Core Math Library (ACML)

- BLAS
- LAPACK
- FFT
- Random number generators

Fortran, C APIs
Numerical Libraries

Intel Math Kernel Library (MKL)

- BLAS
- Sparse BLAS
- LAPACK
- ScaLAPACK
- Extended eigensolvers
- Direct and **Iterative Sparse Solver routines**
- **Vector Mathematical Library (VML) functions**
- **Vector Statistical Library (VSL) functions**
- FFT
- PDE solvers.
- **Optimization** solver routines for solving nonlinear least squares problems through the Trust-Region (TR) algorithms and computing Jacobi matrix by central differences
- **Data fitting**, differentiation and integration, and search
- GMP arithmetic functions

Fortran, C APIs
Numerical Libraries

International Mathematical Software Library (IMSL)

- **Mathematics**
 - Linear algebra
 - Eigensystems
 - Interpolation and approximation
 - Integration and differentiation
 - Differential equations
 - Transforms

- **Optimizations**
 - Nonlinear equations
 - Vector, matrix operations
 - Basic linear algebraic operations
 - Utilities
 - Parallel processing on distributed systems

- **Statistics**
 - Basic stats
 - Regression
 - Correlations
 - Analysis of variance
 - Categorical and discrete data analysis
 - Nonparametric stats
 - Test of goodness of fit and randomness
 - Time series analysis and forecasting
 - Covariance structure and factor analysis

- **Discriminant analysis**
- **Cluster analysis**
- **Sampling**
- **Survival analysis**
- **Multidimensional scaling**
- **Density and hazard estimation**
- **Line printer graphics**
- **Probability distribution functions and inverses**
- **Random number generation**

- **Special Functions**

 Fortran, C/C++ and other language APIs
Numerical Libraries

Numerical Algorithms Group (NAG) Library

Numerical Libraries

- Optimization
- Linear, quadratic, integer and nonlinear programming and least squares problems
- ODEs, PDEs and mesh generation
- Solution of dense, banded and sparse linear equations and eigenvalue problems
- Linear and nonlinear least squares problems
- Curve and surface fitting and interpolation
- Special functions
 - Numerical integration and integral equations
 - Nonlinear equations
- Option pricing formulae
- Wavelet Transforms

Statistics Libraries

- Random number generation
- Simple calculations on statistical data
- Correlation and regression analysis
- Multivariate methods
- Analysis of variance and contingency table analysis
- Time series analysis
- Nonparametric statistics

Fortran, C APIs
GNU Scientific Library (GSL) – A collection of bit of everything...

- **Complex Numbers**
- Special Functions
- Permutations
- **Random Numbers**
- Quasi-Random Sequences
- Random Distributions
- Statistics
- Monte Carlo
- Simulated Annealing
- Series Acceleration
- Minimization
- Least-Squares Fitting
- Physical Constants
- Discrete Wavelet Transforms
- Roots of Polynomials
- **Vectors and Matrices**
- Sorting
- Linear Algebra
- Fast Fourier Transforms
- Transforms
- Interpolation and Approximations
- Numerical Differentiation
- Quadratures and Integration
- Differential Equations
- Root-Finding

C/C++ only!
Numerical Libraries

Resources at *netlib* – A collection of packages

- **Key packages**
 - LINPACK
 - EISPACK
 - BLAS
 - LAPACK
 - ScaLAPACK

- **Many other packages**
 - MINPACK
 - NAPACK
 - MPFUN

http://www.netlib.org/
Numerical Libraries

PETSc – Portable, Extensible Toolkit for Scientific Computing

- Vector, matrix objects and operations
- Finite difference approximation of Jacobians
- Linear system (dense and sparse) solvers: LU and Krylov subspace method with preconditioners (KSP).
- Nonlinear equation solvers (SNES).
- Time stepping (TS) solvers for ODEs.
- Eigenvalue problems with SLEPc.

http://www.mcs.anl.gov/petsc/

C/C++ and Fortran interfaces
Evident traces of C/C++ thinking
Works for multiprocessor environment, transparent to users
Error messages hard to comprehend
Numerical Libraries

PETSc 3.1 – A list of packages needed…

Setting up libbtf1.1.0 (1:3.4.0-2ubuntu2) ...
Setting up **libcsparse** 2.2.3 (1:3.4.0-2ubuntu2) ...
Setting up libklu1.1.0 (1:3.4.0-2ubuntu2) ...
Setting up libldl2.0.1 (1:3.4.0-2ubuntu2) ...
Setting up **libsuitesparse**-dev (1:3.4.0-2ubuntu2) ...
Setting up **libsuperlu** 3 (3.0+20070106-3) ...
Setting up libsuperlu3-dev (3.0+20070106-3) ...
Setting up mpi-default-bin (0.6) ...
Setting up libblacs-mpi1 (1.1-28.2build1) ...
Setting up mpi-default-dev (0.6) ...
Setting up libblacs-mpi-dev (1.1-28.2build1) ...
Setting up libhdf5-openmpi-dev (1.8.4-patch1-2ubuntu3) ...
Setting up libhdf5-mpi-dev (1.8.4-patch1-2ubuntu3) ...

Setting up **libhypre**-2.4.0 (2.4.0b-7) ...
Setting up libhypre-dev (2.4.0b-7) ...
Setting up **libscalapack**-mpi1 (1.8.0-6) ...
Setting up **libmumps**-4.9.2 (4.9.2.dfsg-6) ...
Setting up libscalapack-mpi-dev (1.8.0-6) ...
Setting up libmumps-dev (4.9.2.dfsg-6) ...
Setting up **libscotch**-5.1 (5.1.11.dfsg-7) ...
Setting up libspooles2.2 (2.2-8) ...
Setting up libpetsc3.1 (3.1.dfsg-10ubuntu1) ...
Setting up libspooles-dev (2.2-8) ...
Setting up libscotch-dev (5.1.11.dfsg-7) ...
Setting up libpetsc3.1-dev (3.1.dfsg-10ubuntu1) ...
update-alternatives: using /usr/lib/petscdir/3.1 to provide /usr/lib/petsc (petsc) in auto mode.
update-alternatives: using /usr/lib/petscdir/3.1/aclocal/math-blaspaklapack.m4 to provide /usr/share/aclocal/math-blaspaklapack.m4 (math-blaspaklapack.m4) in auto mode.
Setting up petsc-dev (3.1.dfsg-10ubuntu1) ...
Numerical Libraries

Hypre – A library for solving large, sparse linear systems

- Common **Krylov** subspace based methods.
- Contains a suite of **preconditioners**.
- Uses MPI.

http://acts.nersc.gov/hypre/
Numerical Libraries

Further Readings

- BLAS Quick References.
- LAPACK Quick References.
- LAPACK User’s Guide.
- ScaLAPACK User’s Guide.
- PETSc, http://www.mcs.anl.gov/petsc/. In active development, referencing to classic and recent literatures.
- Boost C++ libraries, http://www.boost.org/doc/libs/1_57_0/.
- Hardware vendor’s sites: AMD, Intel, HP, IBM, Sun, nVIDIA, etc.
- Software vendor’s sites: Intel, IMSL (Rogue Waves), NAG, etc.