Scientific Visualization with ParaView

Weiguang Guan
guanw@sharcnet.ca

ParaView: http://www.paraview.org/download
Code & data: https://rhpcserv.rhpcs.mcmaster.ca/~guanw/ss2015viz.zip
What is Visualization

Data → Graphical representations
What is Visualization used for

- To comprehend data
- To explore and discover
 - Patterns
 - Structures
 - Trends
- To monitor simulations
- To communicate with others

A picture is worth of thousand words numbers!
Numbers (S&P 500)

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 14, 2015</td>
<td>2,099.72</td>
<td>2,111.98</td>
<td>2,098.18</td>
<td>2,108.95</td>
</tr>
<tr>
<td>Jul 13, 2015</td>
<td>2,080.03</td>
<td>2,100.67</td>
<td>2,080.03</td>
<td>2,099.60</td>
</tr>
<tr>
<td>Jul 10, 2015</td>
<td>2,052.74</td>
<td>2,081.31</td>
<td>2,052.74</td>
<td>2,076.62</td>
</tr>
<tr>
<td>Jul 9, 2015</td>
<td>2,049.73</td>
<td>2,074.28</td>
<td>2,049.73</td>
<td>2,051.31</td>
</tr>
<tr>
<td>Jul 8, 2015</td>
<td>2,077.66</td>
<td>2,077.66</td>
<td>2,044.66</td>
<td>2,046.68</td>
</tr>
<tr>
<td>Jul 7, 2015</td>
<td>2,069.52</td>
<td>2,083.74</td>
<td>2,044.02</td>
<td>2,081.34</td>
</tr>
<tr>
<td>Jul 6, 2015</td>
<td>2,073.95</td>
<td>2,078.61</td>
<td>2,058.40</td>
<td>2,068.76</td>
</tr>
<tr>
<td>Jul 2, 2015</td>
<td>2,078.03</td>
<td>2,085.06</td>
<td>2,071.02</td>
<td>2,076.78</td>
</tr>
<tr>
<td>Jul 1, 2015</td>
<td>2,067.00</td>
<td>2,082.78</td>
<td>2,067.00</td>
<td>2,077.42</td>
</tr>
<tr>
<td>Jun 30, 2015</td>
<td>2,061.19</td>
<td>2,074.28</td>
<td>2,056.32</td>
<td>2,063.11</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Graph (S&P 500)
More examples
More examples
More and more examples
Sources of tutorial materials

- “The ParaView Tutorial”, K. Morland
- “Scientific Visualization”, Alex Razoumov, HPC Summer School 2014

NOTE: Some slices of above materials together with their scripts and data are copied and used in this tutorial.
Outline (3 hours)

- Overview of ParaView
- Basic Usage of ParaView
- Advanced Topics of ParaView
- Put It All Together
Overview of ParaView

- Introduction
 - www.paraview.org
 - Current version 4.4
 - Kitware, Los Alomas, Sandia National Labs, etc
 - Open source
 - General-purpose visualization package
 - Large user base
Overview of ParaView

• Introduction
 • Multiple platforms (Windows, Linux/Unix, MacOS)
 • Parallel visualization of large data
 • Multi-dimensional and/or Multi-variables
 • Either standalone or client/server mode
 • Rich functionalities implemented as filters
 • Many file formats
 • Various data types
 • Scripting
Overview of ParaView

- Documentations and resources
 - Wiki: http://www.paraview.org/Wiki/ParaView
 - Tutorials: http://www.paraview.org/tutorials
 - Webinars: http://www.paraview.org/webinars
Overview of ParaView

• Documentations and resources
 • Mailing lists:
 • Searchable archive:
 http://public.kitware.com/pipermail/paraview
 • Users:
 http://www.paraview.org/mailman/listinfo/paraview
 • Developers
 http://www.paraview.org/mailman/listinfo/paraview-developers
 • Help online F1 or context-sensitive
Overview of ParaView

- **Architecture**

<table>
<thead>
<tr>
<th>ParaView Client</th>
<th>pvpython</th>
<th>ParaWeb</th>
<th>Catalyst</th>
<th>Custom App</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI (Qt Widgets, Python Wrappings)</td>
<td>ParaView Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenGL</td>
<td>MPI</td>
<td>IceT</td>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>
Overview of ParaView

- Standalone

![Diagram showing client-server architecture]

Client

- Data Server
- Render Server
Overview of ParaView

- Client-Server mode
Overview of ParaView

- Visualization pipelines

Source-1 → Filter-1 → Filter-2 → ... → Filter-N

Source-2 → Filter-b
Overview of ParaView

- **Pipeline components**
 - **Source**: no input, one or more outputs
 - Primitive objects (cube, cylinder, cone, sphere, etc)
 - Data file readers
 - **Filter**: one or more inputs, one or more outputs
Overview of ParaView

- Connections in pipeline
 - Outputs of one component become the inputs of another
 - Compatibility of data type between inputs and outputs
Overview of ParaView

- Data types (sampling structures)

 - Uniform Rectilinear (vtkImageData)
 - Non-Uniform Rectilinear (vtkRectilinearData)
 - Curvilinear (vtkStructuredData)
 - Polygonal (vtkPolyData)
 - Unstructured Grid (vtkUnstructuredGrid)
 - Multi-block
 - Hierarchical Adaptive Mesh Refinement (AMR)
 - Hierarchical Uniform AMR
 - Octree
Overview of ParaView

- Data types at sampling points
 - Scalars (density, temperature, pressure, etc)
 - Vectors (velocity)
 - Normals
 - Texture Coordinates
 - Tensors
Overview of ParaView

- Example of pipeline

CT data reader ➔ Volume data ➔ Contour filter ➔ Polygonal mesh

- File name
- Iso-value
5 minutes
Basic Usage of ParaView

- Walk through GUI elements with simple examples
 - Primitives (Cylinder, sphere, etc)
 - Readers (air flow dynamics simulation, etc)
 - Filters (clipping, contouring, calculator, etc)

- What to learn
 - Create and manipulate pre-defined objects
 - Import objects from data files
 - View information of objects
 - Change display properties
 - Transform objects by applying filters
 - Multiple views and camera linkage
 - Save results (screenshots, animations, states)
Basic Usage of ParaView

- SHARCNet visualization stations
 - 10 viz stations (≤64GB memory, ≤12 cores, modern GPUs)
 - https://www.sharcnet.ca/my/software/show/67

- ParaView on SHARCNet viz stations
 - VNC (TigerVNC)
 - Client-server mode
Basic Usage of ParaView

- Start ParaView
 - Linux/Unix: type `paraview` in a command window
 - MacOS: click ParaView in `Applications` folder
 - Windows: click ParaView from Start Menu

Then
- ParaView GUI appears
- `Pvserver` running in the background
Basic Usage of ParaView

- ParaView GUI
 - Menu Bar
 - Toolbars
 - Pipeline Browser
 - Properties Panel
 - Advanced Toggle
 - 3D View
Basic Usage of ParaView

- **Example 1**
 - Cylinder, sphere, cube
 - Multiple views and linking cameras

- **Example 2**
 - Loading file “disk_out_ref.ex2”
 - Volume rendering (transfer function)
 - Streamline and tube

- **Example 3**
 - Wavelet
 - Calculator
Basic Usage of ParaView

- Summary
 - Mouse interactions (Edit → Setting... Camera tab)
 - Me (Camera) or objects move?
 - Objects vs Views
 - An object can be displayed in more than one view
 - An object can have different appearances in different views
 - Active object (highlighted in pipeline browser)
 - Shown in Properties Panel
 - Subsequent transforms (filters) will apply to
 - Active view (highlighted by a blue outline)
 - Shown in Properties Panel
Basic Usage of ParaView

• Summary
 • Parameters
 • Define and change the underlying data
 • Geometric properties of primitives (height, radius, ...)
 • Parameters of filters (iso-value, ...)
 • Define and change only the appearance
 • Graphical representations (Surface, wireframe, points, etc)
 • Color
 • Lighting
 • Surface reflection properties
Basic Usage of ParaView

- **Summary**
 - Caution while handling large structured datasets
 - Avoid using filters that generate unstructured data

- Append Datasets
- Append Geometry
- Clean
- Clean to Grid
- Clip
- Connectivity
- D3
- Delauney 2D3D
- Extract Edges
- Linear Extrusion
- Lopp Subdivision

- Reflect
- Rotational Extrusion
- Shink
- Slice
- Smooth
- Subdivide
- Tessellate
- Tetrahedralize
- Triangle Strips
- Triangulate
5 minutes
Advanced Topics of ParaView

- Python scripting
- Importing your data
- Animation
- Visualization of large data in client-server mode
Advanced Topics of ParaView

- Python scripting
 - Scripting vs GUI-based operations
 - One GUI-based operation ⟷ one or more scripting commands
 - Three ways of scripting
 - Tools ⟷ Python Shell, you can mix
 - Run scripts
 - Interactively issue commands
 - GUI-based operations
 - Pypython: interactive client
 - Pvbatch: non-interactive batch execution
Advanced Topics of ParaView

• Python scripting
 • Basic elements
 • `from paraview.simple import *` # import paraview module
 • `sphere = Sphere()` # create a sphere
 • `Show()` # turn on visibility
 • `Render()` # refresh display
 • Help command
 • `help(paraview.simple)`
 • `help(Sphere)`
 • `help(sphere)`
Advanced Topics of ParaView

- Python scripting
 - Python basics
 - import os
 - os.getcwd()
 - os.chdir(path)
 - os.listdir(path)

Example of displaying files in current working directory:
os.listdir(os.getcwd())
Advanced Topics of ParaView

- Importing your own data
 - Write your data into
 - **Raw data file** (writeRawBinary.cpp). While loading file, you need to specify
 - Data type
 - Endianness
 - Dimensionality
 - Data array origin, extend, spacing along each dimension
 - CVS (not for large data)
 - **NetCDF** (writeNetCDF.cpp)
 - Meta data saved into file as well
 - Various VTK formats
Advanced Topics of ParaView

- Animation
 - Displaying time varying datasets
 - User defined animations
 - Dynamically changing parameters of objects you create
 - Dynamically changing parameters of camera
Advanced Topics of ParaView

- Visualization of large data in client-server mode
 - VNC and run ParaView remotely on supercomputers
 - Run ParaView in client-server mode
 - Place “servers.pvsc” file in
 - C:\Users\yourUserName\AppData\Roaming\ParaView on Windows
 - /home/yourUserName/.config/ParaView on Linux/MacOS
 - Set up passphraseless ssh by adding your public key to .ssh/authorized_keys on remote computer
 - File ➔ Connect ...
- ParaView (VTK inside) has built-in parallel mechanisms
Questions?
or
Put It All Together

Task: Create an animation, in which a skull moves in a 3D scalar field (e.g., temperature). The skull surface is color-mapped with the intensities it insects with the field. As the skull moves, colors on its surface changes as well.

- Create a skull from medical images
- Create a scalar volume representing temperature
- Attach a “Transform” filter to skull
- Map volume data on the transformed skull by using “Resample with dataset” filter
- Create an animation on parameters of the “Transform” filter