Deep Learning on SHARCNET: Tools you can use

Presenter: Fei Mao, HPC Consultant, SHARCNET
Outlines

• Deep Learning
• Hardware in SHARCNET
• Software tools
• Common issues
Deep Learning

- Learn multiple layers of representation, corresponding to different levels of abstraction
 - theory on the advantage of depth (Hasted et al 1986 & 1991), (Bengio et al. 2007), (Bengio and Delalleau 2011), (Braverman 2011)
 - exploiting composition gives an exponential gain in representational power (humans organize ideas and concepts hierarchically!)
 - biologically inspired learning - the brain is deep! (Bengio 2015)

Image: Convolutional net architecture (Zeiler and Fergus, 2013)

Example: A Convolutional Net
“An Astounding Baseline for Recognition”
DL Successes

• Vision
 - Object recognition and detection
 - Pose estimation and activity recognition

• Speech
 - Speech recognition
 - Speaker authentication

• Natural Language Processing
 - Question answering
 - Machine translation

• Gaming
 - Mastering the game of Go
Large Scale Visual Recognition Challenge (ILSVRC)

- A benchmark in object category classification and detection on hundreds of object categories and millions of images
 - ILSVRC classification task: 1000 object classes and approximately 1.2 million training images
- The first "real" benchmark where deep learning beat sophisticated computer vision systems
 - ILSVRC 2010: 28.2% top5 err rate, NEC
 - ILSVRC 2012: 16.4%, AlexNet (deep convnet)
 - ILSVRC 2014: 6.7%, GoogLeNet (very deep convnet)
 - ILSVRC 2015: 3.57%, Deep Residual Net(152 layers)
DL with HPC

• DL particularly well-suited to parallelization
 - Data parallelism inherent in pixel-based inputs (e.g. images and videos). Each core (e.g. GPU) is responsible for a chunk of input data
 - Task parallelism inherent in redundant processing units (neurons). Each core (e.g. GPU) is responsible for part of the architecture

• Hardware accelerators (e.g. GPUs, FPGAs)
 - Theano, Caffe all provide GPU support by way of CUDA
 - NV DIGITS provides multi-GPU support

• Distributed frameworks (e.g. Google Tensorflow)
GPU Clusters

• Mosaic
 - 20 GPU nodes
 - One K20m per node
 - 20 CPU cores per node
 - 256GB mem per node
 - IB QDR
 - mos1 as dev-node

• Copper
 - 8 GPU nodes
 - 4 K80 cards per node (8 GPU units)
 - 16 CPU cores per node
 - 96GB mem per node
 - IB FDR
Tools for DL

- Popular Deep Learning Tools
 - **Google Tensorflow (Python)**
 - https://www.sharcnet.ca/help/index.php/Tensorflow
 - **Caffe/ NV DIGITS (C++ w/ Python & Matlab wrappers)**
 - https://www.sharcnet.ca/help/index.php/Caffe
 - **Theano/Pylearn2/Lasagne (Python)**
Common issues

• Number of CPU cores
 - Tensorflow, >5 cores
 - DIGITS, whole node
 - Caffe, >2 cores
 - Theano, 1 or 2 cores

• GPUs (support cuDNN)
 - K20 (Mosaic, ~4.7GB mem)
 - K80 (Copper, ~11.5GB mem)
 - 750Ti (Angel, 2GB mem)

• File I/O
 - /tmp for small files (e.g. images)
 - /scratch or /work for database files

• Internet access
 - only on login node

• Multi-GPU
 - Shared Memory (e.g. Copper)
 - Distributed (Copper and Mosaic)

• Security
 - NV DIGITS, open port to public