Leveraging HPC to Accelerate Machine Learning

Weiguang Guan
SHARCNet/CC
guanw@sharcnet.ca
Goal

✅ To learn how to efficiently train DNN on HPC clusters

- Data I/O
- CPUs vs GPUs
- Multiple GPUs on a single node
- Distributed multi-GPU across multiple nodes

❌ Not a tutorial on

- Machine learning
Outline

● Introduction to HPC clusters in Canada
● Overview of distributed parallel NN training
● Regular NN training \Rightarrow distributed NN training on a single node
 ○ Through different APIs: Keras, Estimator
 ○ Performance benchmarks of using single/multiple CPUs/GPUs
● Distributed NN training across cluster (HOROVOD)
Compute Canada (CC)

Canada’s Federated Advanced Research Computing Systems and Services

70+ Institutions Served
Resources of Compute Canada

- Beluga (Calcul Quebec)
- Graham (SHARCNet)
- Cedar (Westgrid)
- Niagara (SciNet)
- Clouds
 - East cloud
 - Arbutus
 - Graham cloud
Graham cluster operated by SHARCNet

- 884 base nodes (32 cpu cores, 125GB memory)
- 56 nodes (32 cpu cores, 250GB memory)
- 24 nodes (32 cpu cores, 502GB memory)
- 3 nodes (64 cpu cores, 3022GB memory)
- 160 GPU nodes (32 cpu cores, 124GB memory, 2 nVidia Pascal p100 GPUs)
- 7 AI GPU nodes (28 cpu cores, 178GB memory, 8 nVidia Volta v100 GPUs)
Architecture of cluster

- Compute Nodes
- ~100 Gb/s Ethernet Switch
- Networked Disk Storage

NextAI 2019
Computing environment

- **Operating systems**: Linux (64-bit CentOS)
- **Languages**: C/C++, Fortran, Matlab/Octave, Python, R, Java, etc.
- **Parallel development support**: MPI, pthreads, OpenMP, CUDA, OpenACC, OpenCL
- **Software modules**: select pre-built and configured software, as well as versions, with the module commands
- **Job Scheduling**: SLURM scheduler
<table>
<thead>
<tr>
<th>File system</th>
<th>Quotas</th>
<th>Backed up?</th>
<th>Purged?</th>
<th>Available by Default?</th>
<th>Mounted on Compute Nodes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Space /home</td>
<td>50 GB/0.5M files per user</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Scratch Space /scratch</td>
<td>20 TB/1M files per user. Extendable to 100 TB</td>
<td>No</td>
<td>Yes, all files older than 60 days</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Space /project</td>
<td>1 TB and 0.5M files per group, can request increase to 10 TB</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local disk</td>
<td>>960GB SSD</td>
<td>No</td>
<td>No</td>
<td>Transient</td>
<td>Per node</td>
</tr>
</tbody>
</table>
File systems

- /home (nfs)
- /project (lustre)
- /scratch (lustre)
- Fast local disk: $SLURM_TMPDIR (SSD or RAMDisk)

Reading data from one 16MB file on lustre is enormously faster than from 400 40KB files

- 👍 Sequential I/O of large datasets
- 👎 I/O of many small datasets or random I/O of large datasets
Lustre file system

Diagram showing the structure of a Lustre file system with object storage targets (OSTs) connected to object storage servers through a high performance data network (Omni-Path, InfiniBand, 10/40/100GbE).
File striping in Lustre FS
File striping in Lustre FS (cont.)

Lfs getstripe <file_name>

Lfs setstripe --stripe_size=1m --stripe_count=2 <file_name>
Use local disk for data I/O

Local disks on compute nodes are SSD

- /project or /scratch space → $SLURM_TMPDIR
- Loading data from $SLURM_TMPDIR
- Computing
- Saving intermediate/final results to $SLURM_TMPDIR
- $SLURM_TMPDIR → /project or /scratch space
Job Scheduler --- Slurm

- `sbatch abc.sh`: to submit a job script
- `squeue`: to list the status of submitted jobs
- `sacct`: to show details of recent jobs
- `scancel`: to kill jobs
#!/bin/bash

#SBATCH --time=0-10:05 # Run time limit (DD-HH:MM)
#SBATCH --account=def-user # account
#SBATCH --ntasks=4 # Number of MPI processes, default 1
#SBATCH --cpus-per-task=32 # Normally defined for threaded jobs
#SBATCH --gres=gpu:2 # number of GPUs
#SBATCH --mem=120G # memory request

sru m ./myprog
Distributed Parallel DNN training

- Overview
- Distributed DNN training on a single node
- Distributed DNN training across multiple nodes
NN training

- Feed forward
- Back propagation
- Apply gradients to update parameters (or variables) of the model
Two different parallelisms

- Data parallelism
 - Data are divided and each chunk is sent to each device

- Model parallelism
 - Model (graph) are divided, each partition is sent to each device
Synchronous data parallelism
Asynchronous data parallelism
Overview of distributed strategies

- Synchronous distributed training
 - Mirrored
 - Central storage
 - Multi-worker mirrored
 - TPU (same as Mirrored except for its own all-reduce)
- Asynchronous distributed training
 - Parameter server
Mirrored strategy

- Data parallelism
- Model replica per GPU
Central storage strategy
Parameter server strategy

Each worker

- Computes gradient on subset of image data
- Pushes the gradient to the server
- Pulls new parameter from server

Each server

- Aggregates gradients
- Updates parameters
Your choice of distributed NN training

- Using one of the above strategies
- Using custom distributed one:

```python
with tf.device("GPU:0"):
    ....
    Code block that is run on GPU:0
    ....
    ....

with tf.device("GPU:1"):
    ....
    Code block that is run on GPU:1
    ....
```
The mirrored strategy

- How to create NN with TF’s different APIs
- How to change them to use multiple GPUs on the same node
- Benchmarking
 - Multiple CPUs
 - Single GPU (p100, v100)
 - Multiple GPUs on single node
 - Distributed multiple GPUs across multiple nodes
Benchmarking

- Tool: Tensorflow
 - 1.13
 - 2.0 Beta (tf_upgrade_v2 --infile tensorfoo.py --outfile tensorfoo-upgraded.py)

- Machine learning example
 - Task: Recognition of handwritten digits
 - Data: MNIST
Benchmarks on machine learning

- Using recognition of mnist handwritten digits as an example
Handwritten digits recognition codes

- low-level API
- Keras
- estimator
Benchmark of multiple CPUs

Batch size = 50
Iterations = 20000

<table>
<thead>
<tr>
<th># of CPUs</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2854.43</td>
</tr>
<tr>
<td>2</td>
<td>2295.09</td>
</tr>
<tr>
<td>4</td>
<td>1582.72</td>
</tr>
<tr>
<td>8</td>
<td>1153.90</td>
</tr>
<tr>
<td>16</td>
<td>762.10</td>
</tr>
<tr>
<td>32</td>
<td>1187.92</td>
</tr>
</tbody>
</table>
Benchmark of multiple CPUs (cont.)

Batch size = 256
Iterations = 20000

<table>
<thead>
<tr>
<th># of CPUs</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11193.94</td>
</tr>
<tr>
<td>2</td>
<td>8757.93</td>
</tr>
<tr>
<td>4</td>
<td>6645.16</td>
</tr>
<tr>
<td>8</td>
<td>3838.28</td>
</tr>
<tr>
<td>16</td>
<td>2559.46</td>
</tr>
<tr>
<td>32</td>
<td>2336.07</td>
</tr>
</tbody>
</table>
Benchmark of single GPU

Batch size = 256, Iterations = 20000

nVidia Pascal p100 GPU

- ~157 seconds (low-level API)
- ~133 seconds (Keras)
- ~185 seconds (estimator)

1 p100 GPU is ~15 times faster than 16 CPU cores (Intel E5-2683 v4 Broadwell)
Benchmark of single GPU (cont.)

Batch size = 256, Iterations = 20000

<table>
<thead>
<tr>
<th></th>
<th>nVidia Pascal p100 GPU</th>
<th>nVidia Volta v100 GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-level API</td>
<td>157</td>
<td>103</td>
</tr>
<tr>
<td>Keras</td>
<td>135</td>
<td>128</td>
</tr>
<tr>
<td>Estimator</td>
<td>185</td>
<td>133</td>
</tr>
</tbody>
</table>
More GPUs we use, the faster training will be?
Convert to Multi-GPU version

- low-level API
- Keras
- estimator
Benchmark of multiple GPUs (Keras)

Batch size = 256
Iterations = 20000

<table>
<thead>
<tr>
<th># of GPUs</th>
<th>Time (sec) p100</th>
<th>Time (sec) v100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>161</td>
<td>164</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>229</td>
</tr>
</tbody>
</table>
Benchmark of multiple GPUs (Estimator)

Batch size = 256
Iterations = 20000

<table>
<thead>
<tr>
<th># of GPUs</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p100</td>
<td>v100</td>
</tr>
<tr>
<td>1</td>
<td>185</td>
</tr>
<tr>
<td>2</td>
<td>252</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

* Batch size must be multiple of #GPUs
More GPUs we use, the faster training will be? No! Not always. Why?
Why?

Hypothesis: The computing task of the MNIST example (~3 million trainable parameters) is far below the capacity of 1 GPU.

Test:

- Increase the scale of the NN
- Increase the batch size
Benchmark of multiple GPUs (Keras)

<table>
<thead>
<tr>
<th>Batch size = 2048</th>
<th>Iterations = 20000</th>
<th># of GPUs</th>
<th>Time (sec)</th>
<th>v100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>268</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch size = 8192</th>
<th>Iterations = 20000</th>
<th># of GPUs</th>
<th>Time (sec)</th>
<th>v100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1203</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>873</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>828</td>
<td></td>
</tr>
</tbody>
</table>
Benchmark of multiple GPUs (Estimator)

<table>
<thead>
<tr>
<th>Batch size = 2048</th>
<th>Iterations = 20000</th>
</tr>
</thead>
<tbody>
<tr>
<td># of GPUs</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>1</td>
<td>723</td>
</tr>
<tr>
<td>2</td>
<td>447</td>
</tr>
<tr>
<td>4</td>
<td>357</td>
</tr>
<tr>
<td>8</td>
<td>431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch size = 8192</th>
<th>Iterations = 20000</th>
</tr>
</thead>
<tbody>
<tr>
<td># of GPUs</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>1</td>
<td>2791</td>
</tr>
<tr>
<td>2</td>
<td>1246</td>
</tr>
<tr>
<td>4</td>
<td>818</td>
</tr>
<tr>
<td>8</td>
<td>714</td>
</tr>
</tbody>
</table>
Why?

Hypothesis: The computing task is far below the capacity of 1 GPU.

Test:

- Increase the scale of the NN
- Increase the batch size
ResNet-50

- 50 layers with default image size = 224 (23 million trainable parameters)
- git clone https://github.com/tensorflow/models.git
- Training parameters
 - Use synthetic data instead of real image data
 - Batch_size = 128
 - Number of GPUs = 1, 2, 4, 8
Benchmark of ResNet-50

Batch size = 128

<table>
<thead>
<tr>
<th># of GPUs</th>
<th>Examples/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>345</td>
</tr>
<tr>
<td>2</td>
<td>567</td>
</tr>
<tr>
<td>4</td>
<td>877</td>
</tr>
<tr>
<td>8</td>
<td>1132</td>
</tr>
</tbody>
</table>
Orchestra in play

Horovod --- Multi-GPU multi-node parallelism by Uber AI team

- https://github.com/uber/horovod
- TF’s MultiWorkerMirroredStrategy
Horovod --- Multi-GPU Multi-node parallelism

\[p'' = p' + \Delta p \]

Diagram showing parameter servers, model replicas, and data sources connected in a parallel architecture.
Ratio of workers vs parameter servers

Averages All the Gradients

or

Each Averages Portion of the Gradients
Baidu's ring-allreduce (2017)
NCCL ring-allreduce

- NCCL 1: ring-allreduce across multiple GPUs on a node
- NCCL 2: ring-allreduce across multiple nodes
Tensor fusion

Combination of multiple small tensors into a big one
Horovod --- Multiple GPUs on multiple nodes

- Load python modules
 - module load python/3.7
 - Module load cuda cudnn
 - module load scipy-stack/2019a

- Create python virtual environment
 - export ENV=$HOME/nextai-env
 - virtualenv --no-download $ENV
 - source $ENV/bin/activate
 - pip install --upgrade pip
Horovod --- Multiple GPUs on multiple nodes (cont.)

- Install Tensorflow in the virtual environment
 - `pip install tensorflow_gpu --no-index`
- Download/install NCCL2
 - [nccl-download](https://developer.nvidia.com/nccl/nccl-download)
 - `setrpaths.sh --path /path/to/nccl2 --add_origin`
- Install Horovod in the virtual environment
 - `export HOROVOD_CUDA_HOME=$CUDA_HOME`
 - `export HOROVOD_NCCL_HOME=/path/to/nccl2`
 - `export HOROVOD_GPU_ALLREDUCE=NCCL`
 - `pip install --no-cache-dir horovod`
Horovod --- Multiple GPUs on multiple nodes (cont.)

- Clone TF benchmark repo:
 - git clone https://github.com/tensorflow/benchmarks.git

- Run the benchmarking script
 - mpirun -np $((SLURM_NTASKS/16)) -bind-to core -map-by slot:PE=16 -report-bindings -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib python -u scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model resnet50 --batch_size 32 --variable_update horovod
Benchmarks with ResNet50

Images/sec: (ResNet-50 with batch size=32 per GPU)

<table>
<thead>
<tr>
<th># of Nodes</th>
<th># of GPUs</th>
<th>Images per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>322.93</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>629.01</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1238.57</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>2443.49</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>4825.47</td>
</tr>
<tr>
<td>32</td>
<td>64</td>
<td>9318.20 (10143.52)</td>
</tr>
</tbody>
</table>
Benchmarks with ResNet50
Thank you!

Any questions?