Fortran Signal Handling

Ge Baolai
SHARCNET
The University of Western Ontario

June 19, 2008

1 Signal Handling in User Applications

A running programme may be interrupted or terminated by the operating sys-
tem. When an interruption occurs, a signal is delivered to the process. The
running process may take appropriate actions once it receives a signal. This tu-
torial describes how to handle signals issued by the system during the execution
of a Fortran programme.

Signal handling in C is done through the call to system function signal(2).
The call

signal (signum, handler)

installs a user defined routine handler, which will be invoked at a later time
when the user selected signal signum arrives. When the user routine handler is
called, it takes the actions defined by the user. For instance, the following call

signal (SIGTERM, action_sigterm)

installs a user defined function action_sigterm(), which will be invoked when
the process catches SIGTERM. When the operating system kills a process, it sends
a SIGTERM, followed by a SIGKILL. The handler routine, when invoked, gives the
control back to the process and a (last) chance to take actions, such as writing
current data to disk files.

Designed solely for numerical computation, the Fortran standard, until the
late 1990s, did not have intrisic procedures or APIs defined for signal handling.
Instead exceptions, primarily of interest to floating point arithmetics such as
division by zero, illegal arguments to mathematical functions, etc. are handled
by runtime libraries. Upon the occurrance of such exceptions, errors are reported
and the process is terminated, unless default actions are predefined, mostly at
compile time.

While handling exceptions by runtime libraries greatly minimizes the pro-
gramming efforts of Fortran programmers, there are situations that being able
to deal with the exceptions by users before the programme quits abnormally
appears to be valuable. For instance, in the event that a programme is being

terminated by the system when a scheduled runtime has been exhausted, one
woule like to gracefully shutdown the programme by saving the states of vari-
ables and intermedium results from the computation before the programme is
killed. In order to gracefully shutdown a programme, the application must be
able to first catch the signal and then take necessary actions accordingly.

2 Signal Handling in Fortran as An Extension

Some vendor supplied Fortran implementations, including for example digital,
IBM, Sun and Intel, had the extension that allows the user to do signal handling
as in C. The interface for installing a signal handler appears the same

call signal (signum, handler)

where signum is the value of signal defined for the targetted architecture, as
shown in Figure 1, and handler is a user defined procedure in the form of
subroutine. The signal numbers are architecture dependent. Figure 2 shows

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSRI1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

Figure 1: Symbolic names and values of common signals as returned from com-
mand kill -1 for Linux i686.

a different set of values defined on Linux Alpha. In order for the code to be

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2 32) SIGRTMIN

Figure 2: Symbolic names and values of common signals as returned from com-
mand ki1l -1 on Linux Alpha.

portable, one should use the symbolic names instead of values.

The interface signal() requires that parameters that are to be passed to
the handler, if any, would have to be visiable to the handler as globals, except
for signum, which is the only argument that can be passed the the handler as a
dummy argument.

GNU Fortran has defined instrinsic signal() as an extension

call signal(signum, handlerl[, status])

where the third argument, which is optional featured by the support of poly-
morphism in Fortran 90 standard, stores the return value of the call to system
function signal(2).

The behaviour of the Fortran extention of signal() is implementation de-
pendent. In the following example,

program fsignal_test
external warning_sigint ! Must declare as external

call signal(SIGINT, warning sigint)
call sleep(30)
end program

subroutine warning_sigint
print *, ’Process interrupted (SIGINT), exiting...’
return

end subroutine warning_sigint

compiled using Intel Fortran compiler 10.0, when the programme is interrupted
from the command line by Ctrl+C key stroke, the handler warning_sigint is
not invoked. Instead, one will see the following

forrtl: error (69): process interrupted (SIGINT)

Image PC Routine Line Source
a.out O808EBAF Unknown Unknown Unknown
a.out 0808E1CF Unknown Unknown Unknown
a.out 0806B66A Unknown Unknown Unknown
a.out 0805DAB8 Unknown Unknown Unknown
a.out 0804A3FD Unknown Unknown Unknown
002FD420 Unknown Unknown Unknown
a.out 08049D2C Unknown Unknown Unknown
libc.so.6 00469F70 Unknown Unknown Unknown
a.out 08049AC1 Unknown Unknown Unknown

The signal SIGINT is intercepted by the Fortran runtime library. In order to
catch the signal SIGINT and take actions defined in the handler warning_sigint,
one needs to add the following C code

void sigclear_(int *signum)

{
signal (*signum, NULL);
}

and call it in the Fortran code before the installation of signal handler

program fsignal_test
external warning_sigint ! Must declare as external

call sigclear_(SIGINT)
call signal(SIGINT, warning sigint)
call sleep(30)

end program

Technical Points A set of exception handling intrinsic functions have been in-
troduced to Fortran 95 and later standards. Interested readers are recommended
to read John Reid’s historical notes [2] and the book by the same author [1],
as well as and the documentations of the latest Fortran standards concerning
exception handling of IEEE floating point arithmetics.

3 A User Level Approach

The support for signal handling can be achieved at user level as well with mini-
mum efforts involved. Assume we want to have the same interface as supported
as an extension in some Fortran flavours, i.e.

call signal (SIGTERM, action_sigterm)

We need to write a C routine that makes a call to system function signal().
The C code, stored in a separate file csigfun.c will look as simple as the
following:

/* in "csigfun.c" */
#include <signal.h>

typedef void (*sighandler_t) (int);

void signal_(int* signum, sighandler_t handler)
{
signal (*signum, handler);

3

The follwing Fortran code shows a simple example of calling the C function
signal () to install signal handlers

! in "fsignal_test.f90"
program fsignal_test

external warning_sigterm ! Must declare as external
external warning_sigint ! Must declare as external

! Install signal handlers, return immediately
call signal (SIGTERM, warning_sigterm)
call signal (SIGINT, warning_sigint)

! Do something that will take some time
call sleep(30)
end program

subroutine warning_sigterm
print *, ’Process interrupted (SIGTERM), exiting...’
return

end subroutine warning_sigterm

subroutine warning_sigint
print *, ’Process interrupted (SIGINT), exiting...’
return

end subroutine warning_sigint

Each call to the C routine signal() installs a signal handler for the specified
signum (SIGTERM and SIGINT), which is defined as a subroutine in the same file.
Note that the call to signal () is nonblocking. That is, it returns immediately,
thus the programmem continutes to execute the subsequent instructions.

We show in the following how to compile and run the test programme that
contains parts written in mixed Fortran and C languages. Without loss of
generality, we assume the name for the C compiler is cc and the name for the
Fortran compiler is fort We compile the C code first to obtain an object file
using command

cc —-c csigfun.c

This will create a object file named csigfun.o. Then we compile the Fortran
code, and link with the C object

fort fsignal_test.f90 csigfun.o -o fsignal_test

to generate the executable fsignal_test.
Start the executeable from command line

./fsignal_test

Note that the execution of the call to sleep(30) will put the programme in
sleep mode for about 30 second, which gives us enough time to open another
terminal to find the process ID and issue an signal from command line.

[bge@mobile-hpc]$ ps -ef | grep a.out

bge 4314 4282 0 20:47 pts/1 00:00:00 fsignal_test

bge 4316 3094 0 20:47 pts/0 00:00:00 grep fsignal_test
[bge@mobile-hpc]

[bge@mobile-hpcl$ kill -s INT 4314

As soon as the interrupt signal INT is issued from the command line, in the termi-
nal from which we started the programme, the signal handler warning_sigint ()
is invoked and a message from the subroutine warning_sigint () is printed and
the programme then exits.

[bge@mobile-hpcl$
Process interrupted (SIGINT), exiting...

The source code of Fortran signal support and the example above can be
obtained at

https://devel.sharcnet.ca/repos/sharcware/src/fsignal

The reader is recommended to refer to the C version of signal handling for more
details.

Technical Points Two things here need special attention. First there is a name
convention universally accepted today in C/Fortran mixed languange program-
ming. A C rouinte to be called from within Fortran programmes needs to have
a trainling underscore in its name, as shown in the above example. If a C rou-
tine’s name already contains an underscore or multiple underscores, adding one
or two trailing underscore(s) is compiler dependent. GNU by default assumes
two trailing underscores, while some other compilers such as Intel’s assume a sin-
gle underscore. Nvertheless most compilers have the option to specify whether
to use a single trailing underscore.

Second in C function calls, arguments are passed by values, while in Fortran,
arguments are passed by references. To call a C function from within a Fortran
code, the arguments of the C function should be passed as pointers.

References

[1] Michael Metcalf and John K. Reid. Fortran 90/95 Explained. Oxford Uni-
versity Press, 2 edition, 1999.

[2] John Reid. Exception handling in Fortran. ACM Fortran Forum, 14, 9-15,
1995.

