
The wet steam is a mixture of twophases. The primary phase is the gaseousphase consisting of watervapor (denoted by the subscript v) while the secondary phase is the liquidphase consisting of condensedwater droplets (denoted by the subscript l).
The following assumptions are made in this model:
From the preceding assumptions, it follows that the mixture density ( ) can be related to the vapor density ( ) by the following equation:
In addition, the temperature and the pressure of the mixture will be equivalent to the temperature and pressure of the vaporphase.
The mixture flow is governed by the compressible NavierStokes equations given in vector form by Equation 25.54:
where =(P,u,v,w,T) are mixture quantities. The flow equations are solved using the same densitybased solver algorithms employed for general compressible flows.
To model wet steam, two additional transport equations are needed [ 153]. The first transport equation governs the mass fraction of the condensed liquid phase ( ):
where is the mass generation rate due to condensation and evaporation (kg per unit volume per second). The second transport equation models the evolution of the number density of the droplets per unit volume:
where is the nucleation rate (number of new droplets per unit volume per second).
To determine the number of droplets per unit volume, Equation 23.61 and the average droplet volume are combined in the following expression:
(23.65) 
where is the liquid density and the average droplet volume is defined as
(23.66) 
where is the droplet radius.
Together, Equation 23.62, Equation 23.63, and Equation 23.64 form a closed system of equations which, along with Equation 23.61, permit the calculation of the wet steam flow field.