
Mass diffusion coefficients are required whenever you are solving species transport equations in multicomponent flows. Mass diffusion coefficients are used to compute the diffusion flux of a chemical species in a laminar flow using (by default) Fick's law:
where is the mass diffusion coefficient for species in the mixture and is the thermal (Soret) diffusion coefficient.
Equation 8.91 is strictly valid when the mixture composition is not changing, or when is independent of composition. This is an acceptable approximation in dilute mixtures when , for all except the carrier gas. FLUENT can also compute the transport of nondilute mixtures in laminar flows by treating such mixtures as multicomponent systems. Within FLUENT, can be specified in a variety of ways, including by specifying , the binary mass diffusion coefficient of component in component . is not used directly, however; instead, the diffusion coefficient in the mixture, , is computed as
where is the mole fraction of species . You can input or for each chemical species, as described in Section 8.9.4.
In turbulent flows, Equation 8.91 is replaced with the following form:
where is the effective Schmidt number for the turbulent flow:
and is the effective mass diffusion coefficient due to turbulence.
In turbulent flows your mass diffusion coefficient inputs consist of defining the molecular contribution to diffusion using the same methods available for the laminar case, with the added option to alter the default settings for the turbulent Schmidt number. As seen from Equation 8.94, this parameter relates the effective mass diffusion coefficient due to turbulence with the eddy viscosity . As discussed in Section 8.9.5, the turbulent diffusion coefficient normally overwhelms the laminar diffusion coefficient, so the default constant value for the laminar diffusion coefficient is usually acceptable.