[Fluent Inc. Logo] return to home search
next up previous contents index

B.3.10 Interface Face Parents


Index: 61
Scheme symbol: xf-face-parents
C macro: XF_FACE_PARENTS
Status: only for grids with non-conformal interfaces

This section indicates the relationship between the intersection faces and original faces. The intersection faces (children) are produced from intersecting two non-conformal surfaces (parents) and are some fraction of the original face. Each child will refer to at least one parent. The format of the section is as follows:

(61 (face-id0 face-id1)
(
 parent-id-0 parent-id-1
 .
 .
 .
))

where,


face-id0 = index of the first child face in the section
face-id1 = index of the last child face in the section
parent-id-* = index of parent faces

These are in hexadecimal format.

If you read a non-conformal grid from FLUENT into TGrid, TGrid will skip this section, so it will not maintain all the information necessary to preserve the non-conformal interface. When you read the grid back into FLUENT, you will need to recreate the interface.



Example Files


Example 1

Figure  B.3.1 illustrates a simple quadrilateral mesh with no periodic boundaries or hanging nodes.

Figure B.3.1: Quadrilateral Mesh
figure

The following describes this mesh:

(0 "Grid:")

(0 "Dimensions:")
(2 2)

(12 (0 1 3 0))
(13 (0 1 a 0))
(10 (0 1 8 0 2))

(12 (7 1 3 1 3))

(13 (2 1 2 2 2)(
1 2 1 2
3 4 2 3))

(13 (3 3 5 3 2)(
5 1 1 0
1 3 2 0
3 6 3 0))

(13 (4 6 8 3 2)(
7 4 3 0
4 2 2 0
2 8 1 0))

(13 (5 9 9 a 2)(
8 5 1 0))

(13 (6 a a 24 2)(
6 7 3 0))

(10 (1 1 8 1 2)
(
 1.00000000e+00  0.00000000e+00
 1.00000000e+00  1.00000000e+00
 2.00000000e+00  0.00000000e+00
 2.00000000e+00  1.00000000e+00
 0.00000000e+00  0.00000000e+00
 3.00000000e+00  0.00000000e+00
 3.00000000e+00  1.00000000e+00
 0.00000000e+00  1.00000000e+00))

Example 2

Figure  B.3.2 illustrates a simple quadrilateral mesh with periodic boundaries but no hanging nodes. In this example, bf9 and bf10 are faces on the periodic zones.

Figure B.3.2: Quadrilateral Mesh with Periodic Boundaries
figure

The following describes this mesh:

(0 "Dimensions:")
(2 2)

(0 "Grid:")

(12 (0 1 3 0))
(13 (0 1 a 0))
(10 (0 1 8 0 2))

(12 (7 1 3 1 3))

(13 (2 1 2 2 2)(
1 2 1 2
3 4 2 3))

(13 (3 3 5 3 2)(
5 1 1 0
1 3 2 0
3 6 3 0))

(13 (4 6 8 3 2)(
7 4 3 0
4 2 2 0
2 8 1 0))

(13 (5 9 9 c 2)(
8 5 1 0))

(13 (1 a a 8 2)(
6 7 3 0))

(18 (1 1 5 1)(
 9 a))

(10 (1 1 8 1 2)(
 1.00000000e+00  0.00000000e+00
 1.00000000e+00  1.00000000e+00
 2.00000000e+00  0.00000000e+00
 2.00000000e+00  1.00000000e+00
 0.00000000e+00  0.00000000e+00
 3.00000000e+00  0.00000000e+00
 3.00000000e+00  1.00000000e+00
 0.00000000e+00  1.00000000e+00))

Example 3

Figure  B.3.3 illustrates a simple quadrilateral mesh with hanging nodes.

Figure B.3.3: Quadrilateral Mesh with Hanging Nodes
figure

The following describes this mesh:

(0 "Grid:")

(0 "Dimensions:")
(2 2)

(12 (0 1 7 0))
(13 (0 1 16 0))
(10 (0 1 d 0 2))

(12 (7 1 6 1 3))
(12 (1 7 7 20 3))

(58 (7 7 1 7)(
 4 6 5 4 3))

(13 (2 1 7 2 2)(
1 2 6 3
1 3 3 4
1 4 4 5
1 5 5 6
6 7 1 2
5 8 2 6
9 5 2 5))

(13 (3 8 b 3 2)(
a 6 1 0
6 9 2 0
4 b 4 0
9 4 5 0))

(13 (4 c f 3 2)(
2 8 6 0
c 2 3 0
8 7 2 0
7 d 1 0))

(13 (5 10 10 a 2)(
d a 1 0))

(13 (6 11 12 24 2)(
3 c 3 0
b 3 4 0))

(13 (b 13 13 1f 2)(
c 8 7 0))

(13 (a 14 14 1f 2)(
b c 7 0))

(13 (9 15 15 1f 2)(
9 b 7 0))

(13 (8 16 16 1f 2)(
9 8 2 7))

(59 (13 13 b 4)(
 2 d c))

(59 (14 14 a 6)(
 2 12 11))

(59 (15 15 9 3)(
 2 b a))

(59 (16 16 8 2)(
 2 7 6))

(10 (1 1 d 1 2)
(
 2.50000000e+00  5.00000000e-01
 2.50000000e+00  1.00000000e+00
 3.00000000e+00  5.00000000e-01
 2.50000000e+00  0.00000000e+00
 2.00000000e+00  5.00000000e-01
 1.00000000e+00  0.00000000e+00
 1.00000000e+00  1.00000000e+00
 2.00000000e+00  1.00000000e+00
 2.00000000e+00  0.00000000e+00
 0.00000000e+00  0.00000000e+00
 3.00000000e+00  0.00000000e+00
 3.00000000e+00  1.00000000e+00
 0.00000000e+00  1.00000000e+00))


next up previous contents index Previous: B.3.9 Cell Tree
Up: B.3 Grid Sections
Next: B.4 Other (Non-Grid) Case
© Fluent Inc. 2006-09-20