
A multigrid cycle can be defined as a recursive procedure that is applied at each grid level as it moves through the grid hierarchy. Four types of multigrid cycles are available in FLUENT: the V, W, F, and flexible ("flex'') cycles. The V and W cycles are available in both AMG and FAS, while the F and flexible cycles are restricted to the AMG method only. (The W and flexible AMG cycles are not available for solving the coupled equation set due to the amount of computation required.)
The V and W Cycles
Figures 25.6.1 and 25.6.2 show the V and W multigrid cycles (defined below). In each figure, the multigrid cycle is represented by a square, and then expanded recursively to show the individual steps that are performed within the cycle. The individual steps are represented by a circle, one or more squares, and a triangle, connected by lines: circlesquaretriangle for a V cycle, or circlesquaresquaretriangle for a W cycle. The squares in this group expand again, into circlesquaretriangle or circlesquaresquaretriangle, and so on. You may want to follow along in the figures as you read the steps below.
For the V and W cycles, the traversal of the hierarchy is governed by three parameters, , , and , as follows:
These iterations are referred to as prerelaxation sweeps because they are performed before moving to the next coarser grid level. The number of prerelaxation sweeps is specified by .
In Figures 25.6.1 and 25.6.2 this step is represented by a circle and marks the start of a multigrid cycle. The highwavenumber components of error should be reduced until the remaining error is expressible on the next coarser mesh without significant aliasing.
If this is the coarsest grid level, then the multigrid cycle on this level is complete. (In Figures 25.6.1 and 25.6.2 there are 3 coarse grid levels, so the square representing the multigrid cycle on level 3 is equivalent to a circle, as shown in the final diagram in each figure.)

In the AMG method, the default value of
is zero (i.e., no prerelaxation sweeps are performed).

In Figures 25.6.1 and 25.6.2, the restriction from a finer grid level to a coarser grid level is designated by a downwardsloping line.
In Figures 25.6.1 and 25.6.2 the prolongation is represented by an upwardsloping line.
The highfrequency error now present at the fine grid level is due to the prolongation procedure used to transfer the correction.
In Figures 25.6.1 and 25.6.2, this relaxation procedure is represented by a single triangle.
For AMG, the default value of is 1.

Note, however, that if you are using AMG with Vcycle to solve an energy equation with a solid conduction model presented with anisotropic or very high conductivity coefficient, there is a possibility of divergence with a default postrelaxation sweep of 1. In such cases you should increase the postrelaxation sweep (e.g., to 2) in the AMG section for better convergence, or change the cycle type to Fcycle or Wcycle, with an underrelaxation factor set to 1. This is especially effective when calculating pure heat conduction or conjugate heat transfer. Any instability observed when using the Fcycle or Wcycle can be remedied by increasing the prerelaxation sweep count to 1. Although the default value of 0 is optimal for most cases, increasing the prerelaxation sweep value to 1 or 2 can improve convergence.

Since the default value for is 0 (i.e., prerelaxation sweeps are not performed),this procedure is roughly equivalent to using the solution from the coarse level as the initial guess for the solution at the fine level.
For FAS, the default value of is zero (i.e., postrelaxation sweeps are not performed); postrelaxation sweeps are never performed at the end of the cycle for the finest grid level, regardless of the value of . This is because for FAS, postrelaxation sweeps at the fine level are equivalent to prerelaxation sweeps during the next cycle.