Table of Contents

1. Introduction to Material Models
1.1. Material Models for Displacement Applications
1.2. Material Models for Temperature Applications
1.3. Material Models for Electromagnetic Applications
1.4. Material Models for Coupled Applications
1.5. Material Parameters
2. Element Support for Material Models
3. Material Models
3.1. Understanding Material Data Tables
3.2. Experimental Data
3.3. Linear Material Properties
3.3.1. Defining Linear Material Properties
3.3.2. Stress-Strain Relationships
3.3.3. Damping
3.3.4. Thermal Expansion
3.3.5. Emissivity
3.3.6. Specific Heat
3.3.7. Film Coefficients
3.3.8. Temperature Dependency
3.3.9. How Material Properties Are Evaluated
3.4. Plasticity Models
3.4.1. Bilinear Kinematic Hardening
3.4.2. Multilinear Kinematic Hardening
3.4.3. Nonlinear Kinematic Hardening
3.4.4. Bilinear Isotropic Hardening
3.4.5. Multilinear Isotropic Hardening
3.4.6. Nonlinear Isotropic Hardening
3.4.7. Anisotropic
3.4.8. Hill's Anisotropy
3.4.9. Drucker-Prager
3.4.10. Extended Drucker-Prager
3.4.11. EDP Cap Material
3.4.12. Gurson's Model
3.4.13. Multilinear Elastic
3.4.14. Cast Iron Plasticity Material
3.5. Hyperelastic Material Models
3.5.1. Arruda-Boyce Hyperelastic Material
3.5.2. Blatz-Ko Foam Hyperelastic Material
3.5.3. Extended Tube Material
3.5.4. Gent Hyperelastic Material
3.5.5. Mooney-Rivlin Hyperelastic Material
3.5.6. Neo-Hookean Hyperelastic Material
3.5.7. Ogden Compressible Foam Hyperelastic Material
3.5.8. Ogden Hyperelastic Material
3.5.9. Polynomial Form Hyperelastic Material
3.5.10. Response Function Hyperelastic Material
3.5.11. Yeoh Hyperelastic Material
3.5.12. Special Hyperelastic Material Models
3.6. Viscoelastic Material Model
3.6.1. Viscoelastic Formulation
3.6.2. Time-Temperature Superposition
3.6.3. Harmonic Viscoelasticity
3.7. Microplane Material Model
3.7.1. Microplane Modeling
3.7.2. Material Models with Degradation and Damage
3.7.3. Material Parameters Definition and Example Input
3.7.4. Element Support for the Microplane Material Model
3.7.5. Learning More About Microplane Material Modeling
3.8. Porous Media
3.9. Magnetic Material Model
3.10. High-Frequency Electromagnetic Material Models
3.10.1. 3-D High-Frequency Material Properties
3.10.2. 2-D High-Frequency Material Properties
3.11. Anisotropic Elastic Material Model
3.12. Piezoelectric Material Model
3.13. Piezoresistive Material Model
3.14. Anisotropic Electric Permittivity Material Model
3.15. Rate-Dependent Plastic (Viscoplastic) Material Models
3.15.1. Perzyna and Peirce Options
3.15.2. Exponential Visco-Hardening (EVH) Option
3.15.3. Anand Option
3.15.4. Specifying Rate-Dependent Plasticity (Viscoplasticity)
3.16. Gasket Material Model
3.17. Creep Equations
3.17.1. Implicit Creep Equations
3.17.2. Explicit Creep Equations
3.18. Swelling Model
3.19. Shape Memory Alloy (SMA) Material Model
3.19.1. Shape Memory Alloy Model for Superelasticity
3.19.2. Shape Memory Material Model with Shape Memory Effect
3.19.3. Element Support for SMA
3.19.4. Learning More About Shape Memory Alloy
3.20. MPC184 Joint Material Models
3.20.1. Linear Elastic Stiffness and Damping Behavior
3.20.2. Nonlinear Elastic Stiffness and Damping Behavior
3.20.3. Frictional Behavior
3.21. Contact Friction
3.21.1. Isotropic Friction
3.21.2. Orthotropic Friction
3.21.3. Redefining Friction Between Load Steps
3.21.4. User-Defined Friction
3.22. Cohesive Zone Material Model
3.22.1. Exponential Cohesive Zone Material for Interface Elements
3.22.2. Bilinear Cohesive Zone Material for Interface Elements
3.22.3. Cohesive Zone Material for Contact Elements
3.23. Fluid Material Models
3.24. User-Defined Material Model
3.24.1. Using State Variables with UserMat
3.25. Material Strength Limits
3.26. Damage Initiation Criteria
3.27. Damage Evolution Law
4. Explicit Dynamics Materials
5. Material Curve Fitting
5.1. Hyperelastic Material Curve Fitting
5.1.1. Understanding the Hyperelastic Material Curve-Fitting Process
5.1.2. Step 1. Prepare Experimental Data
5.1.3. Step 2. Input the Experimental Data
5.1.4. Step 3. Select a Material Model Option
5.1.5. Step 4. Initialize the Coefficients
5.1.6. Step 5. Specify Control Parameters and Solve
5.1.7. Step 6. Plot Your Experimental Data and Analyze
5.1.8. Step 7. Write Data to the TB Command
5.2. Viscoelastic Material Curve Fitting
5.2.1. Understanding the Viscoelastic Material Curve-Fitting Process
5.2.2. Step 1. Prepare Experimental Data
5.2.3. Step 2. Input the Data
5.2.4. Step 3. Select a Material Model Option
5.2.5. Step 4. Initialize the Coefficients
5.2.6. Step 5. Specify Control Parameters and Solve
5.2.7. Step 6. Plot the Experimental Data and Analyze
5.2.8. Step 7. Write Data to the TB Command
5.3. Creep Material Curve Fitting
5.3.1. Understanding the Creep Material Curve-Fitting Process
5.3.2. Step 1. Prepare Experimental Data
5.3.3. Step 2. Input the Experimental Data
5.3.4. Step 3. Select a Material Model Option
5.3.5. Step 4. Initialize the Coefficients
5.3.6. Step 5. Specify Control Parameters and Solve
5.3.7. Step 6. Plot the Experimental Data and Analyze
5.3.8. Step 7. Write Data to the TB Command
5.3.9. Tips For Curve Fitting Creep Models
5.4. Chaboche Material Curve Fitting
5.4.1. Understanding the Chaboche Material Curve-Fitting Process
5.4.2. Step 1. Prepare Experimental Data
5.4.3. Step 2. Input the Experimental Data
5.4.4. Step 3. Select a Material Model Option
5.4.5. Step 4. Initialize the Coefficients
5.4.6. Step 5. Specify Control Parameters and Solve
5.4.7. Step 6. Plot the Experimental Data and Analyze
5.4.8. Step 7. Write Data to the TB Command
6. Material Model Combinations
7. Understanding Field Variable Interpolation
7.1. Data Processing
7.2. Example: One-Dimensional Interpolation
7.3. Example: Two-Dimensional Interpolation
8. GUI-Inaccessible Material Properties

Release 14.0 - © 2011 SAS IP, Inc. All rights reserved.