Table of Contents

Using This Manual
1. The Contents of This Manual
2. The Contents of the ANSYS Polyflow Manuals
3. Typographical Conventions Used in This Manual
4. Contacting Technical Support
1. Getting Started
1.1. Introduction
1.2. Program Structure
1.2.1. The ANSYS Polyflow Package
1.2.1.1. Application-Specific Versions of ANSYS Polyflow
1.3. Overview of Using ANSYS Polyflow
1.3.1. Planning Your ANSYS Polyflow Analysis
1.3.2. Problem Solving Steps
1.4. Basic Concepts
1.4.1. Tasks and Sub-Tasks
1.4.1.1. Tasks
1.4.1.2. Sub-Tasks
1.4.2. Subdomains and Boundary Sets
1.4.3. Boundary Conditions
1.5. Starting ANSYS Polydata and ANSYS Polyflow
1.5.1. Starting ANSYS Polydata
1.5.1.1. Starting Application-Specific Versions of ANSYS Polydata
1.5.2. Starting ANSYS Polyflow
1.5.2.1. Starting Application-Specific Versions of ANSYS Polyflow
1.6. GPU Accelerator Capability
1.6.1. Activating the GPU Accelerator Capability
1.6.2. Limitations
1.6.3. Messages
1.6.4. Troubleshooting
1.7. The .p3rc Configuration File
1.7.1. Setting Up Your .p3rc Files
1.7.2. Keywords in the .p3rc File
1.7.2.1. Solution Keywords
1.7.2.2. Setup Keywords
1.7.2.3. Example
1.8. Known Limitations in ANSYS Polyflow 17.0
1.9. ANSYS Polyflow Documentation
1.9.1. Accessing the Documentation Files Using the ANSYS Help Viewer
1.9.2. Accessing the PDF Files of the Documentation
1.9.3. Viewing and Printing the PDF Documentation
1.9.3.1. Navigating the PDF Files
1.9.3.2. Printing the PDF Files
2. ANSYS Polydata Graphical User Interface
2.1. ANSYS Polydata GUI
2.2. Menu Bar
2.2.1. File
2.2.2. Graphical window
2.2.3. Help
2.3. Keywords
2.4. Text Window
2.5. The Tree View Window
2.6. ANSYS Polydata Tabs
2.6.1. Menus Tab
2.6.2. Mesh Tab
2.6.3. Help Tab
2.7. Graphics Display Window
2.8. Graphics Toolbar
2.9. Output Text Window
3. Managing ANSYS Polyflow Projects Using ANSYS Polyman
3.1. Starting ANSYS Polyman
3.2. Overview of the ANSYS Polyman Interface
3.2.1. Menu Bar
3.2.2. Toolbar
3.2.3. Tree Region
3.2.4. Information Region
3.2.5. Comment Region
3.2.6. Tab Bar
3.3. Creating a New Project, Simulation, or GAMBIT Branch
3.3.1. Creating a New Project
3.3.2. Creating a New Branch for GAMBIT Files
3.3.3. Creating a New Simulation
3.4. Opening an Existing Project
3.5. Importing Files into a Project
3.5.1. Importing a GAMBIT File
3.5.2. Importing a Simulation
3.5.3. Importing a Mesh File
3.5.4. Importing a Material Data File
3.5.5. Importing a Data File
3.5.6. Importing a Result File
3.5.7. Importing a User-Defined Function File
3.5.8. Importing a CSV File
3.5.9. Importing a .poly File
3.5.10. Importing an I-deas File
3.5.11. Importing a PATRAN File
3.5.12. Importing a (user) File
3.6. Exporting Files
3.7. Copying and Deleting Files
3.8. Starting the Programs
3.8.1. Starting GAMBIT
3.8.2. Starting ANSYS Polydata
3.8.3. Starting ANSYS Polyflow
3.8.4. Starting Fluent/Post 
3.8.5. Starting FieldView
3.8.6. Starting CFD-Post
3.8.7. Starting ANSYS Polyfuse
3.8.8. Starting ANSYS Polystat
3.8.9. Starting ANSYS Polymat
3.8.10. Starting ANSYS Polydiag
3.9. Setting Options for ANSYS Polydata, ANSYS Polyflow, FieldView & CFD-Post
3.9.1. Options for ANSYS Polydata
3.9.2. Options for ANSYS Polyflow
3.9.3. Options for FieldView
3.9.4. Options for CFD-Post
3.10. Converting a GAMBIT Neutral File
3.11. Viewing a Listing File
3.12. Obtaining Information about a Project or Simulation
3.12.1. Obtaining Project Information
3.12.2. Obtaining Simulation Information
3.13. Scheduling a Simulation
3.14. Getting Help
3.15. Exiting ANSYS Polyman
4. Sample Session
4.1. Problem Description
4.2. Outline of Procedure
4.3. Creating a Project and Importing the Mesh
4.4. Starting ANSYS Polydata and Reading the Mesh File
4.5. Creating a Task
4.6. Creating a Sub-Task and Specifying its Domain
4.6.1. Creating a Sub-Task
4.6.2. Specifying the Sub-Task’s Domain of Definition
4.7. Defining Material Properties for the Fluid
4.8. Defining Flow Boundary Conditions
4.8.1. Flow Inlet
4.8.2. Outer Wall
4.8.3. Free Surface
4.8.4. Flow Exit
4.8.5. Symmetry Axis
4.8.6. Rotating Screw
4.9. Defining the Remeshing
4.9.1. Specifying the Region To Be Remeshed
4.9.2. Specifying the Parameters for the System of Spines
4.10. Assigning the Stream Function Value
4.11. Define the Units for Simulation
4.12. Saving the Data File and Exiting from ANSYS Polydata
4.13. Calculating a Solution with ANSYS Polyflow
4.14. Examining the Results with CFD-Post
4.14.1. Starting CFD-Post and Reading the Results
4.14.2. Displaying Contours of Pressure
4.14.3. Displaying Velocity Vectors
4.14.4. Exiting from CFD-Post
5. Reading and Writing Files
5.1. Files Written and Read by ANSYS Polydata and ANSYS Polyflow
5.2. Reading Mesh Information into ANSYS Polydata
5.2.1. Reading Files Directly
5.2.1.1. Optional Conversion to a Case File
5.2.2. Converting Mesh Files Created by Other Programs
5.3. Reading and Writing ANSYS Polydata Data Files
5.3.1. Writing a Data File
5.3.2. Reading a Data File into ANSYS Polydata
5.3.3. Contents of the Data File
5.4. Reading and Writing ANSYS Polydata Session Files
5.5. Reading Mesh, Data, and Results Files into ANSYS Polyflow
5.5.1. Reading a Data File into ANSYS Polyflow
5.5.2. Starting an ANSYS Polyflow Calculation from an Existing Results File
5.5.3. Starting an Evolution or Time-Dependent Calculation from Existing Results and Restart Files
5.6. Writing an ANSYS Polyflow Results File
5.7. Writing an ANSYS Polyflow Listing File
5.7.1. Saving ANSYS Polyflow Messages to a Listing File
5.7.2. Controlling the Amount of Information in the Listing File
5.7.3. Contents of a Sample Listing File
5.8. Exporting Files for Postprocessing and Additional Simulations
5.8.1. Exporting Mesh and Solution Data
5.8.1.1. ANSYS Polyplot, V3DMSH, and 3DCROSS Files
5.8.1.2. PATRAN Files
5.8.1.3. I-deas Files
5.8.1.4. DataVisualizer Files
5.8.1.5. CFView-PF Files
5.8.1.6. IGES Files
5.8.1.7. CSV Files
5.8.1.8. FieldView Files
5.8.1.9. CFD-Post Files
5.8.1.10. EnSight Files
5.8.1.11. ANSYS Mechanical APDL Files
5.8.1.12. ANSYS Mechanical Files
5.8.2. Saving Data at a Specified Point
5.8.3. Output for Time-Dependent, and Evolution Calculations
5.9. Filename Syntax
5.9.1. Naming Conventions
6. Unit Systems
6.1. Overview of Units
6.2. Converting to a New Unit System
6.3. Restrictions on Units
7. Meshes
7.1. Mesh Topologies
7.1.1. PMeshes
7.1.2. Examples of Acceptable Mesh Topologies
7.1.3. Choosing the Appropriate Mesh Type
7.1.3.1. Setup Time
7.1.3.2. Computational Expense
7.1.3.3. Application Being Modeled
7.2. Meshes Created with GAMBIT
7.2.1. Subdomains in GAMBIT
7.2.2. Boundary Sets in GAMBIT
7.2.3. Defining PMeshes in GAMBIT
7.3. .poly Meshes Created with ANSYS ICEM CFD or ANSYS Meshing
7.4. Meshes Created with PATRAN or I-deas
7.4.1. Element and Node Numbering
7.4.2. Jacobians
7.4.3. Subdomains
7.4.4. Boundary Sets
7.4.5. Elements of Mixed Dimension and PMesh Generation
7.4.6. Notes for I-deas Master Series Users
7.5. Meshes Created with POLYMESH
7.5.1. 2D Meshes
7.5.1.1. Defining PMeshes in 2D
7.5.2. 3D Meshes
7.5.2.1. Defining PMeshes in 3D
7.5.3. Element Numbering
7.6. Meshes Created with HYPERMESH
7.6.1. Element and Node Numbering
7.6.1.1. Meshes
7.6.2. Jacobians
7.6.3. Subdomains and Boundary Sets
7.6.4. Restrictions
7.7. ANSYS Fluent Meshes Created with ANSYS Meshing, ANSYS Fluent, Fluent Meshing, and GAMBIT
7.8. Mesh Decomposition and Optimization
7.8.1. About the Optimization of Element Numbering
7.8.2. About Domain Decomposition
7.8.3. Decomposing and Optimizing the Mesh
7.8.4. Using Optimized or Decomposed Mesh
7.8.5. Specifying the Number of Sub-Parts for Decomposition
7.9. Results Interpolation Onto Another Mesh
7.9.1. The CSV File
7.9.2. Using Mesh-to-Mesh Interpolation
7.9.3. Using the CSV File to Initialize Solution Variables
7.10. Combining Meshes with ANSYS Polyfuse
7.10.1. Introduction
7.10.2. Starting ANSYS Polyfuse
7.10.3. Steps for Combining Meshes
7.10.4. Reading and Writing Files
7.10.4.1. Selecting the Mesh Files
7.10.4.2. Saving the Combined Mesh File
7.10.4.3. Reading and Writing an ANSYS Polyfuse Session File
7.10.5. Translating, Rotating, and Scaling a Mesh
7.10.5.1. Translating a Mesh
7.10.5.2. Rotating a Mesh
7.10.5.3. Scaling a Mesh
7.10.5.4. Manipulating Translation, Rotation, and Scaling Operations
7.10.6. Viewing the Mesh
7.10.7. Reporting Information about the Mesh
7.11. Examining the Mesh in ANSYS Polydata
7.11.1. Translating, Rotating, and Zooming with the Mouse
7.11.2. Changing the View Axis
7.11.3. Scaling and Resizing the View
7.11.4. Displaying Perspective and Orthographic Views
7.11.5. Modifying the Background Color for the Display
7.11.6. Including the Coordinate Axes in the Display
7.11.7. Selecting Portions of the Mesh for Display
7.11.8. Modifying the Color of the Mesh Display
7.11.9. Specifying Outline, Wireframe, and Shaded Displays
7.11.10. Reporting Information about the Mesh
7.12. Generating a Sliceable Free Jet Mesh
7.13. Converting a Shell Mesh and Results
8. Boundary Conditions
8.1. Overview of Boundary Conditions
8.1.1. Available Boundary Conditions
8.1.2. Setting Boundary Conditions
8.2. Zero Wall Velocity Condition
8.3. Slip Condition
8.3.1. Shear Force Calculation
8.3.2. User Inputs for the Slip Condition
8.4. Porous Wall Condition
8.5. Symmetry Condition
8.6. Inflow Condition
8.6.1. Inflow Calculation for Generalized Newtonian Flow
8.6.2. Inflow Calculation for Viscoelastic Flow
8.6.3. User Inputs for the Inflow Condition
8.7. Outflow Condition
8.7.1. Outflow Condition for Generalized Newtonian Flow
8.7.2. Outflow Condition for Viscoelastic Flow
8.7.3. User Inputs for the Outflow Condition
8.8. Free Surface Condition
8.9. Normal and Tangential Velocity Condition
8.10. Normal and Tangential Force Condition
8.11. Normal Velocity and Tangential Force Condition
8.12. Normal Force and Tangential Velocity Condition
8.13. Global Force Condition
8.14. Cartesian Velocity Condition
8.15. Velocity Profile from a CSV File
8.16. Interface Condition
8.17. Interface with Elastic Solid
8.18. Periodic Condition
8.18.1. Normal Force Calculation
8.18.2. User Inputs for the Porous Wall Condition
8.19. Non-Conformal Boundaries
8.19.1. Solution Technique for Non-Conformal Boundaries
8.19.2. Connecting Non-Conformal Boundaries
8.20. Specifying Conditions Using Sub-Models
8.20.1. The Topo-Object
8.20.2. Types of Sub-Models
8.20.3. Defining a Sub-Model
8.20.4. Defining a Topo-Object
8.20.5. Defining a Material Dataset
8.21. Using a Rotating Reference Frame
9. Material Properties
9.1. Overview of Material Properties
9.2. Specifying Material Properties as Algebraic Functions
9.2.1. Example
9.2.2. User Inputs
9.2.3. Compressible Flows
9.3. Reading and Writing Material Data Files
9.4. Curve Fitting for Material Properties
9.5. Using Material Data from the CAMPUS Database
9.6. Using Material Data from the ANSYS Polyflow Databases
9.6.1. The Miscellaneous and Shell_Materials Directories
9.6.2. The Extrusion, BlowMolding, and BlowMolding_viscoelastic Directories
10. Generalized Newtonian Flow
10.1. Introduction
10.2. Theory and Equations
10.2.1. Basic Equations
10.2.2. Shear-Rate-Dependent Viscosity Laws
10.2.2.1. Constant
10.2.2.2. Power Law
10.2.2.3. Bird-Carreau Law
10.2.2.4. Cross Law
10.2.2.5. Modified Cross Law
10.2.2.6. Bingham Law
10.2.2.7. Modified Bingham Law
10.2.2.8. Herschel-Bulkley Law
10.2.2.9. Modified Herschel-Bulkley Law
10.2.2.10. Log-Log Law
10.2.2.11. Carreau-Yasuda Law
10.2.3. Temperature-Dependent Viscosity Laws
10.2.3.1. Arrhenius Law
10.2.3.2. Arrhenius Shear Rate vs. Arrhenius Shear Stress
10.2.3.3. Approximate Arrhenius Law
10.2.3.4. Fulcher Law
10.2.3.5. WLF Law
10.2.3.6. WLF Shear-Stress Law
10.2.3.7. Mixed-Dependence Law
10.2.4. Orthotropic Materials
10.3. Problem Setup
10.3.1. General Procedure
10.3.2. Problem Setup for Reinforced Materials
10.3.3. Controlling the Interpolation
10.3.3.1. Interpolation for Nonisothermal Flows
10.3.3.2. Finite-Element Interpolation for 2D Models
10.3.3.3. Finite-Element Interpolation for 3D Models
10.3.3.4. Viscosity-Related Iterations
10.3.3.5. Interpolation for Nonisothermal Flows
10.3.3.6. Quadratic and Linear Coordinates
10.3.4. Using Evolution to Compute Generalized Newtonian Flow
10.3.4.1. Sample Applications
11. Viscoelastic Flows
11.1. Overview of Viscoelastic Flow
11.1.1. Modeling Viscoelastic Flow
11.2. Differential Viscoelastic Models
11.2.1. Theory and Equations
11.2.1.1. Extra-Stress Tensor
11.2.1.2. Basic Equations
11.2.1.3. Viscoelastic Models
11.2.1.3.1. Upper-Convected Maxwell Model
11.2.1.3.2. Oldroyd-B Model
11.2.1.3.3. White-Metzner Model
11.2.1.3.4. Phan-Thien-Tanner Model
11.2.1.3.5. Giesekus Model
11.2.1.3.6. FENE-P Model
11.2.1.3.7. POM-POM Model [DCPP]
11.2.1.3.8. Leonov Model
11.2.1.4. Temperature Dependence of Viscosity and Relaxation Time in Nonisothermal Flows
11.2.1.5. The Components of a Tensor
11.2.2. Problem Setup for Differential Viscoelastic Flows
11.2.3. Choosing the Differential Viscoelastic Model
11.2.3.1. Analyzing the Problem
11.2.3.1.1. Viscoelasticity
11.2.3.1.2. The Weissenberg Number
11.2.3.1.3. Inertia Effects
11.2.3.1.4. Storage and Loss Moduli
11.2.3.2. Guidelines for Model Selection
11.2.3.2.1. Maxwell Model
11.2.3.2.2. Oldroyd-B Model
11.2.3.2.3. White-Metzner Model
11.2.3.2.4. PTT Model
11.2.3.2.5. Giesekus Model
11.2.3.2.6. FENE-P Model
11.2.3.2.7. POM-POM Model [DCPP]
11.2.3.2.8. Leonov Model
11.2.4. Setting the Viscosity Ratio
11.2.5. Selecting the Interpolation
11.2.5.1. Interpolation for Pressure and Velocity
11.2.5.2. Interpolation for Viscoelastic Stresses
11.2.5.2.1. The Streamwise Approximation for Tensors (SAFT) Technique
11.2.5.2.2. Default Options and Parameters
11.2.5.2.3. Selecting an Interpolation
11.2.5.2.4. Combining Interpolation
11.2.5.2.5. Iterative Scheme for Viscosity and Relaxation Time
11.2.5.3. Interpolation for Nonisothermal Flows
11.2.6. Computing Differential Viscoelastic Flow
11.2.6.1. Using Evolution
11.2.6.2. Sample Applications
11.2.7. Supported Features for Differential Viscoelastic Flow Calculations
11.3. Integral Viscoelastic Models
11.3.1. Introduction
11.3.2. Theory and Equations
11.3.2.1. Extra-Stress Tensor
11.3.2.2. Basic Equations
11.3.2.3. Viscoelastic Models
11.3.2.3.1. Doi-Edwards Model
11.3.2.3.2. KBKZ Model
11.3.2.3.3. Equivalent Generalized Newtonian Models
11.3.2.4. Temperature Shift Functions for Nonisothermal Flows
11.3.2.5. Numerical Method for Integral Viscoelastic Flow
11.3.3. Problem Setup for Integral Viscoelastic Flows
11.3.4. Choosing the Integral Viscoelastic Model
11.3.4.1. Doi-Edwards Model
11.3.4.2. KBKZ Model
11.3.5. Setting the Evolutive Viscosity
11.3.6. Using Evolution to Compute Integral Viscoelastic Flow
11.3.7. Additional Strategies for Convergence
11.3.7.1. Calculations Involving Moving Boundaries
11.3.8. Additional Hints
11.3.8.1. Mesh Resolution
11.3.8.2. Performance on Vector Machines
11.4. Simplified Viscoelastic Model
11.4.1. Theory and Equations
11.4.2. Considerations
11.4.3. Identifying Model Parameters and Functions
11.4.4. Selecting the Interpolation
11.4.5. Problem Setup for Simplified Viscoelastic Model
12. Flow Induced Crystallization (FIC)
12.1. Introduction
12.2. Crystallization Model
12.2.1. Qualitative Description
12.2.2. Extra-Stress Contribution from the Amorphous Phase
12.2.3. Extra-Stress Contribution from the Semicrystalline Phase
12.2.4. Degree of Transformation
12.2.5. Energy Equation
12.2.6. Boundary Conditions
12.2.7. Evolution Schemes
12.2.8. Rheological Model and Properties
12.2.9. Total Extra-stress Postprocessor
12.3. Problem Setup
12.3.1. Names of Variables in ANSYS Polyflow
13. Heat Transfer
13.1. Conduction and Convection
13.1.1. Theory
13.1.1.1. Basic Equations
13.1.1.2. Heat Flux Boundary Conditions
13.1.1.3. Boussinesq Approximation for Density in Nonisothermal Flows
13.1.1.4. Boundaries with Incoming and Outgoing Flows
13.1.2. Problem Setup
13.1.2.1. General Procedure
13.1.2.2. Using Evolution in Heat Conduction and Nonisothermal Flow Calculations
13.2. Internal Radiation
13.2.1. Theory
13.2.1.1. Angular Discretization
13.2.1.2. Domain Boundaries
13.2.1.3. Boundaries Internal to a Domain
13.2.2. User Inputs for Internal Radiation Model
14. Porous Media
14.1. Introduction
14.2. Theory
14.3. Using the Model
14.3.1. General Procedure
15. Free Surfaces and Extrusion
15.1. Introduction
15.2. Theory and Equations
15.2.1. Free Surfaces
15.2.1.1. Dynamic Condition
15.2.1.2. Kinematic Condition
15.2.1.3. Geometrical Degree of Freedom
15.2.2. Moving Interfaces
15.2.2.1. Fixed-Interface Condition
15.2.2.2. Dynamic Condition
15.2.2.3. Kinematic Condition
15.2.2.4. Slipping Between Two Layers in Coextrusion
15.2.3. Directors
15.2.4. Surface Tension
15.2.4.1. Surface Tension Force
15.2.4.2. Velocity Imposed on the Boundary of the Free Surface
15.2.5. Discontinuity of the Normal Direction
15.2.5.1. Corner Lines
15.2.5.2. Surface Kinematic Condition
15.2.5.3. Line Kinematic Condition
15.2.6. Drag
15.2.7. Fluid-Fluid Contact
15.3. User Inputs for Free Surfaces and Moving Interfaces
15.3.1. General Procedure
15.3.2. Defining the Direction of Motion
15.3.2.1. Boundary of the Free Surface or Moving Interface
15.3.2.2. Directors and Symmetry Planes
15.3.2.3. Frequency of the Director Calculation
15.3.3. Controlling the Interpolation
15.3.4. Convergence Strategies
15.3.5. Guidelines for 3D Extrusion Problems
15.3.5.1. Convergence
15.3.5.2. Discontinuity of the Normal Direction
15.3.6. Guidelines for Coextrusion Problems
15.3.7. Static and Dynamic Contact Points or Lines
15.3.7.1. Contact Points and Lines
15.3.7.2. The Moving-Contact-Point Model
15.3.7.3. Inputs for Dynamic Contact Points
15.3.8. Inverse Extrusion and Die Design
15.3.8.1. Maintaining a Constant Shape for a Portion of the Die
15.3.9. Constraint on Global Displacement
15.3.9.1. Finite-Element Formulation
15.3.9.2. Limitations
15.3.9.3. Compatibility with Specific Geometries and Boundary Conditions
15.3.9.4. User Inputs for the Constraint on Global Displacement
15.3.10. Mapping for Fluid-Fluid Contact
16. Remeshing
16.1. Introduction to Remeshing
16.1.1. About Remeshing
16.1.2. Remeshing Techniques in ANSYS Polyflow
16.1.3. Choosing a Remeshing Technique
16.2. Method of Spines
16.3. Euclidean Method
16.4. Method of Planes
16.5. Thompson Transformation
16.5.1. Theory
16.5.2. Example
16.5.3. Implementation
16.6. Optimesh
16.6.1. Theory
16.6.2. Boundary Conditions
16.7. Thin Shell Method
16.7.1. Theory
16.8. Lagrangian Method
16.9. Thin Shell Method with Lagrangian Master
16.10. Lagrangian Method on Borders
16.11. Streamwise Method
16.12. Elastic Methods
16.13. User Inputs for Remeshing
16.14. Local Remeshing
16.14.1. User Inputs for Local Remeshing
16.15. Adaptive Meshing
16.15.1. Overview and Usage
16.15.2. Adaptive Meshing Technique
16.15.3. User Inputs for Adaptive Meshing
16.15.3.1. Adaptive Meshing Parameters for Moving Parts
16.15.3.2. Adaptive Meshing Parameters for Large Variations of Fields
16.15.3.3. Adaptive Meshing Parameters for Contact and Remeshing
16.15.3.3.1. Adaptive Meshing for Contact
16.15.3.3.1.1. Basing the Calculation on Distance
16.15.3.3.1.2. Basing the Calculation on Curvature
16.15.3.3.1.3. Basing the Calculation on Angle and Curvature
16.15.3.3.2. Mapping
16.15.3.3.3. Adaptive Meshing for Remeshing
16.15.3.4. Manage Zones for Remeshing
16.15.3.4.1. Defining Fixed Zones
16.15.3.4.2. Defining Moving Zones
16.15.3.5. Criteria for Remeshing
17. Blow Molding and Thermoforming
17.1. Working of Contact Detection
17.1.1. Shell Elements for 3D Models
17.2. Theory and Equations
17.2.1. Penalty Technique for Detecting Contact
17.2.2. Contact Release
17.2.3. Velocity- or Force-Driven Mold
17.2.4. Heat Transfer and Contact (Imposed Temperature)
17.2.5. Heat Transfer and Contact (Conjugate Heat Transfer)
17.2.6. Strain-Dependent Viscosity
17.2.7. 3D Viscoelastic Blow Molding Simulations
17.2.8. Calculation of the Parison Thickness
17.2.9. Calculation of the Extensions
17.2.9.1. Evaluation of the Extension Components
17.2.9.2. Evaluation of the Area Stretch Ratio
17.2.10. Calculation of the Mass of the Blown Product
17.2.11. Calculation of the Volume of the Blown Product
17.2.12. Calculation of the Permeability of the Blown Product
17.2.13. Time Dependence and Contact Handling
17.2.14. Residual Deformations and Stresses
17.2.15. Temperature Programming
17.3. Setting Up a Contact Problem
17.3.1. Inputs for 2D and 3D Contact Detection
17.3.2. Inputs for Shell Contact Detection
17.3.3. Defining the Thickness Interpolation for Shell Elements
17.3.3.1. Controlling the Thickness Interpolation
17.3.4. Generating a Mesh with Shell Elements
17.4. Computing Derived Quantities in Contact Problems
17.4.1. Inputs for Computing the Extension Components
17.4.2. Inputs for Computing the Mass of the Blown Product
17.4.3. Inputs for Computing the Volume of the Blown Product
17.4.4. Inputs for Computing the Permeability of the Blown Product
17.4.5. Inputs for Parison Programming
17.4.6. Inputs for Residual Stresses and Deformations
17.4.7. Inputs for Temperature Programming
18. Film Casting
18.1. Introduction
18.2. Theory
18.2.1. Overview
18.2.2. Flow Equations
18.2.2.1. Boundary Conditions
18.2.2.2. Stress Boundary Conditions for the DCPP Model in Film Casting
18.2.3. Multilayer Films (Coextrusion)
18.2.4. Heating and Cooling of the Film
18.2.5. Stream Function
18.2.6. Film Problems and Nonlinearity
18.3. Inputs for Film Casting Problems
18.3.1. General Procedure
18.3.2. Guidelines for Setting Boundary Conditions
18.3.2.1. Flow Boundary Conditions
18.3.2.1.1. Multilayer Film Casting Problems
18.3.2.1.2. Viscoelastic Flow Film Problems
18.3.2.2. Thermal Boundary Conditions
18.3.2.2.1. Multilayer Film Problems
18.3.2.3. Stress Boundary Conditions for the DCPP Model in Film Casting
19. Chemically Reacting Flows
19.1. Introduction
19.2. Theory
19.2.1. Overview of Reactions
19.2.2. Definitions
19.2.3. Advection-Diffusion Mechanism
19.2.4. Chemical Reactions
19.3. User Inputs
19.3.1. Defining Chemical Species
19.3.2. Defining Chemical Reactions
19.3.3. Defining the Species Transport Equations
19.3.4. Defining a Closure Equation
19.3.5. Chemical Reactions and Evolution
20. Volume of Fluid (VOF) Model
20.1. Introduction
20.2. Theory
20.2.1. Volume Conservation
20.2.2. Time Step Management
20.2.3. Numerical Considerations
20.2.4. Viscoelastic Fluids
20.3. Problem Setup
21. Flows with Internal Moving Parts
21.1. Introduction
21.1.1. Advantages of the Mesh Superposition Technique
21.1.2. Limitations of the Mesh Superposition Technique
21.2. Theory
21.2.1. Navier-Stokes Equations
21.2.2. Mass Conservation Equation
21.2.3. Energy Equation
21.2.4. Interpolation
21.2.5. Transient Moving Part Velocities
21.2.5.1. Description of Motion
21.2.5.2. Computation of the New Position
21.2.5.3. Computation of the Velocity
21.3. User Inputs
21.3.1. Mesh Considerations
21.3.2. Setting Up Your Problem in ANSYS Polydata
21.3.3. Time-Dependent Parameters
21.4. Guidelines for Problems with Transient Velocities
21.5. Additional Guidelines
22. Sliding Mesh Technique
22.1. Introduction
22.1.1. Advantages of the Sliding Mesh Technique
22.1.2. Limitations of the Sliding Mesh Technique
22.2. Examples
22.3. Meshing
22.4. Equations
22.5. Guidelines
22.6. User Inputs
23. Glass Furnaces and Electrical Heating
23.1. Introduction
23.2. Electrical Heating
23.2.1. Theory
23.2.2. User Inputs for Electrical Heating
23.3. Radiative (Rosseland) Correction
23.3.1. Theory
23.3.2. Using Radiative Correction
23.4. Bubblers
23.4.1. Introduction
23.4.2. Theory
23.4.3. User Inputs for Bubblers
23.4.3.1. Mesh Requirements
23.4.3.2. Defining a Bubble Column in ANSYS Polydata
24. Residual Stresses and Deformations
24.1. Introduction
24.2. Theory and Equations
24.2.1. Modeling
24.2.2. Material parameters
24.2.3. Boundary Conditions
24.2.4. Physical Interpretation
24.2.5. Numerical Treatment
24.3. Problem Setup
25. Fluid Structure Interaction (FSI) Model
25.1. Introduction
25.2. Theory
25.2.1. Effect of Elastic Sub-task on the Flow Domain
25.3. Elasticity Boundary Conditions
25.3.1. Interface With Solid
25.3.2. Interface With a Fluid
25.3.3. Normal and Tangential Displacement Imposed
25.3.4. Normal and Tangential Force Imposed
25.3.5. Normal Displacement and Tangential Force Imposed
25.3.6. Normal Force and Tangential Displacement Imposed
25.3.7. Symmetry Condition
25.3.8. Contact with the Parison
25.3.9. Border of a Moving Part
25.3.10. Assign Displacement at Points
25.4. Problem Setup
25.4.1. Numerical Parameters in Elastic Problem Coupled with Flow Problem
26. Evolution
26.1. Introduction
26.2. Nonlinearity and Evolution
26.3. Available Evolution Functions
26.4. Using Evolution
26.4.1. When to Use Evolution
26.4.2. Determining an Appropriate Evolution Parameter
26.4.3. Problem Setup
26.4.4. Initial Conditions
26.4.5. Output of Results for Evolution Problems
26.5. Interrupting Evolution
26.5.1. Criterion Definition
26.5.2. Available Fields (X) for Criteria
26.5.3. Restriction Functions R
26.5.4. Functions for Obtaining the Check Value F
26.5.5. Coordinate Functions
26.5.6. Inequality Tests
26.5.7. Multiple Criteria
26.5.8. Inputs for Criteria to Interrupt the Evolution
26.5.9. Output for Interruption Criteria
27. Time-Dependent Flows
27.1. Introduction
27.2. Theory
27.2.1. Equations
27.2.2. Integration Methods
27.2.3. Internal Solution Strategy
27.2.4. Time-Marching Schemes
27.3. User Inputs for Time-Dependent Problems
27.3.1. Setting Up a Time-Dependent Problem
27.3.2. Initial Conditions
27.3.3. Output of Results for Time-Dependent Problems
27.4. Outputs to a Listing File
27.5. Interrupting Time-Dependent Computations
27.6. Volume Conservation
28. Computing Derived Quantities
28.1. Overview of Derived Quantities
28.2. Stream Function
28.2.1. Calculation of Stream Function
28.2.2. User Inputs for Stream Function
28.3. Local Shear Rate
28.4. Viscosity
28.5. Rate-of-Deformation Tensor
28.6. Inelastic Stress Tensor
28.7. Viscous and Wall Friction Heating and Dissipated Power
28.8. Total Extra-Stress Tensor
28.9. Residence Time
28.9.1. Calculation of Residence Time
28.9.2. User Inputs for the Residence Time
28.10. Tracking of Material Points
28.10.1. Calculation for Tracking Material Points
28.10.2. User Inputs for Tracking Material Points
28.11. Tracking of a Material Property
28.12. Forces on Slices
28.13. Heat Fluxes
28.14. Flow Rate
28.15. Joule Effect
28.16. Mixing Index
28.17. Vorticity
28.18. Convected Heat
28.19. Parison Thickness
28.20. Extension Evaluation
28.21. Mass of Blown Product
28.22. Volume of Blown Product
28.23. Permeability of Blown Product
28.24. Stress Eigenvalues and Components
28.24.1. Calculation of Eigenvalues
28.24.2. Calculation of the Stress Component Along the Velocity Direction
28.24.3. User Inputs for Stress Eigenvalues
28.25. Quantification of Die Balancing
28.26. Energy Balance
28.27. Parison Programming
28.28. Volume of Liquid
28.29. Temperature Programming
28.30. Thickness Evaluation
29. Using the Solver
29.1. Controlling the Calculations
29.1.1. Recalculating with a Different Interpolation
29.1.2. Specifying the Number of Iterations
29.1.3. Convergence and Divergence
29.1.4. Automatic Detection of Distorted Elements
29.1.5. Time-Marching
29.1.6. Decoupling Calculations
29.1.6.1. Internal Radiation
29.1.6.2. Free Surfaces and Moving Surfaces
29.1.6.3. Transport of Species
29.1.6.4. Nonisothermal Flows
29.1.6.5. Combining Decoupled Calculations
29.2. Solver Details
29.2.1. Selecting the Solver
29.2.2. Classic Direct Solver
29.2.2.1. ANSYS Polyflow’s Implementation
29.2.2.2. Mesh Decomposition and Optimization
29.2.2.3. Solver Robustness
29.2.3. AMF Direct Solver
29.2.4. AMF Direct Solver + Secant
29.2.5. AMF Direct Solver + ILU
29.2.6. AMF Direct Solver + Secant + ILU
29.3. Analyzing Solver Performance
29.3.1. Starting ANSYS Polydiag
29.3.2. Loading, Viewing, and Updating the Simulation Status
29.3.3. Evolution Information
29.3.4. Solver Information
29.3.5. Mass Balance Report
29.3.6. Interrupting Evolution
29.3.7. Writing Status Information to a File
29.3.8. Optimization Information
29.3.9. Design Variable Information
29.3.10. Objective and Cost Function Information
29.3.11. Constraint Information
29.3.12. Exiting ANSYS Polydiag
30. User-Defined Functions (UDFs)
30.1. Introduction
30.1.1. Solver Performance with UDFs
30.2. Writing User-Defined Functions
30.2.1. Naming Your UDF
30.2.2. Summary of CLIPS Syntax
30.2.2.1. Example
30.2.2.2. Using Variables
30.2.3. Testing Your UDF
30.2.4. Mathematical Functions
30.2.4.1. Standard Mathematical Functions
30.2.4.2. Extended Mathematical Functions
30.2.5. Procedural Functions
30.3. Using User-Defined Functions
30.4. Dependence with Respect to Quantities Derived from the Kinematics
30.4.1. Some Quantities Derived from the Kinematics
30.4.2. Possible Viscosity Models with Distinct Behaviors in Shear and Extension
31. User-Defined Templates (UDTs)
31.1. Introduction
31.2. Defining a UDT
31.2.1. Creating a New Template Entry to Flag a Parameter
31.2.2. Reviewing a Template Entry
31.2.3. Modifying a Template Entry
31.3. Using UDTs
31.3.1. As Usual Method
31.3.2. Real UDT Method
31.3.3. Script Method
32. Die Shape Parameterization
32.1. Introduction
32.2. Theory
32.2.1. Element Stiffness During Elastic Remeshing
32.2.2. Domain Transformations
32.2.3. Surface Transformations
32.2.4. Line Transformations
32.2.5. Point Displacement
32.2.6. Hierarchy of Equations
32.3. Remarks and Limitations
32.4. Problem Setup
32.4.1. Fixed Domain
32.4.2. Rigid Translation
32.4.3. Elastic Remeshing
33. Optimization
33.1. Introduction
33.2. Theory
33.2.1. Constrained Optimization
33.2.2. Solving the Optimization Problem
33.2.2.1. The Augmented Lagrange Multiplier (ALM) Method
33.2.2.2. The Fletcher-Reeves (FR) Method
33.2.2.3. The Line Search (LS) Method
33.3. Optimization in ANSYS Polyflow
33.3.1. Design Variables
33.3.2. Extractors
33.3.3. Objective Functions
33.3.4. Constraints
33.3.5. Optimizer Parameters
33.3.6. Remarks
33.4. Problem Setup
33.5. Files and Output for Optimization
33.5.1. The Standard Listing File
33.5.2. The Listing File for Optimization
33.5.3. The Sensitivities Files
33.5.4. The Result Files for Successful Evaluations of the Solution
33.6. Additional Options for Solution Exploration
33.6.1. Design Exploration
33.6.2. VisualDOC
A. Sub-Task Compatibility Charts
B. Running ANSYS Polyflow with VisualDOC
B.1. Introduction
B.2. Constraints and Limitations
B.3. Parameterization Types in ANSYS Polydata
B.3.1. Optimization Files in ANSYS Polydata
B.3.1.1. ANSYS Polydata Parameterization
B.3.1.2. Geometrical Parameterization
B.3.1.3. External Parameterization
B.3.1.4. Combining Types of Optimization
B.3.2. Tagging of Inputs
B.3.2.1. Tagging of Inputs in ANSYS Polydata
B.3.2.2. Tagging of Inputs in GAMBIT
B.3.3. Defining a Response in ANSYS Polydata
B.3.4. File Management for Optimization
B.3.5. Files Generated by an ANSYS Polydata Session
B.4. Problem Setup
C. Known Static Array Limitations
Bibliography

Release 17.0 - © SAS IP, Inc. All rights reserved.