
The shape of things:
A reason for type preference

Tyson Whitehead

August 1, 2010

Abstract

Assuming only that type shapes are self-similar and of finite length, I
present a statistical argument for preferring the shape of one type above
another based on the principle of indifference. The result is a probability
measure on the space of type shapes and, by extension, unconstrained and
partially constrained polymorphic type shapes. Such a measure could be
useful, for example, to rigorously handle ambiguous instances and types,
and order type space for searching.

Key words: Type, shape, probability, inference, polymorphic, measure.

1 Framework
Types can always be resolved by the programmer supplying them. The goal of
a type-inferencing system is to avoid this as much as possible. In the face of
ambiguity, the best any algorithm can do is to choose the type that is most likely
to arise in the program under the circumstances. Any other choice will result in the
programmer having to supply more types. The underlying problem then is how to
define a probability measure on the space of types that reflects the frequency with
which they arise in ambiguous situations.

1.1 Empirical Distribution
From a strictly technical point of view, the best choice for the set of all existing
programs is the empirical distribution of ambiguous types generated by said pro-

1



grams. This and, by extension, other empirical-based distributions, is unsatisfying
for at least three reasons.

• The historical distribution is not stationary. If it is not allowed to evolve, it
becomes less and less applicable to the evolving body of programs. If it is
allowed to evolve, it changes how ambiguity is resolved, breaking programs
in which everything has not been manually resolved.

• The set of types is not closed. The programmer can create any number
of new elementary terms and compositions for which there is no historical
distribution to draw on.

• Using a historical distribution is intellectually unsatisfying. It is effectively
stating there is either nothing deeper at play than what is seen on the surface,
or that what is at play is too deep to penetrate.

1.2 Theoretical Distribution
This leaves theoretical distributions. The path to defining such a distribution ro-
bustly is to capture something truly fundamental about the underlying system. To
this end, consider two arbitrary types

(Float→ Int)→ [Float]→ [Int],
IO (IO Int)→ IO Int.

Without going outside the scope of type inferencing by assuming a minimal under-
standing of the ambiguity in which these types arose (i.e., by assuming a minimal
understand of part of the program), they can only be taken at face value.

Taking types at face value leaves seemingly little upon which to base the dis-
tribution. There are names differentiating the identically kinded elementary types
used to compose them (e.g., Float versus Int) and the structure of their compo-
sition as constrained by the required kinds (e.g., (Float → Int) → [Int] versus
Float→ [Int]→ Int).1 Consider these in greater detail.

1.2.1 Elementary Types

The names of the elementary types apparently present a way to distinguish them.
Does it make sense to do this? Should, for example, the elementary type Float be

1The kind of a type is its type, which dictates how it can be composed.

2



preferred over Int given a requirement for a type of kind ∗? I argue no for at least
three reasons.

• To promote a specific applicable elementary type over another is to promote
one type of program over another (e.g., while Float might be preferred in
numerical programs, it is certainly not in other types of programs).

• The set of elementary types is not closed. The programmer can create any
number of new elementary types that are applicable. The algorithm can
have no prior information about these and thus no reason for preference.

• Elementary types that are more pervasive due to their requirement by a lan-
guage construct (e.g., every function application results in→ appearing in
a type) cannot skew the distribution of ambiguous types because their addi-
tional appearances due to language requirements are not ambiguous.

Without privileged information regarding the intrinsics of the program, equally
applicable elementary types are only distinguishable by their assigned names. The
assigned names under these circumstances are indistinguishable from arbitrary
ones. To not treat them equally likely is a contradiction. It implies reason for
doing so, access to the privileged information that is inaccessible. The practice
of assigning equal probabilities to mutually exclusive indistinguishable items for
this reason is known as the principal of indifference.

1.2.2 Type Structure

What about the structure? Given no reason to distinguish between equally applica-
ble elementary types, is there reason to distinguish between the kind-constrained
structures formed in composing them? I believe there is for two reasons.

• Because functional languages are higher order, all types can be pervasive at
all levels. Without reason to expect them not to be equally distributed at all
levels, self-similarity follows from the principal of indifference.

• Composed types must be of finite length as non-recursive infinite types can-
not arise in finite-length programs and recursive infinite types are strictly
not allowed.

Together these two points give a non-uniform theoretical distribution for type
shapes. The principal of indifference dictates that the most uniform distribution

3



possible under the finite-length constraint is assumed for the number of arguments
required to reduce an applicable elementary type. This provides a spine for com-
posed types. The principal of self-similarity fills in the spine as each argument is
again an elementary type requiring some number of arguments to reduce it to a
required kind.

2 Model
Let qn be the probability that the number of arguments required to reduce an ap-
plicable elementary type to a required kind is n − 1 (if only elementary types
were applied, the total number of types in the resulting expression would be n).
The most uniform distribution for qn given an expected number of arguments N
(currently unknown) can be found by maximizing the associated entropy function

−
∑
n

ln(qn) qn

subject to the constraints
∑

n qn = 1,
∑

n n qn = N , and a zero probability of
infinite types.

2.1 Constrained Shapes
Solving this problem under the first two constraints via Lagrange multipliers gives
a family of exponentially decaying probabilities

qn = pn−1p̄

where p = (N − 1)/N and p̄ = 1 − p = 1/N . Substituting qn into the entropy
expression and simplifying gives − ln(pp/p̄p̄) = N ln(N) − (N − 1) ln(N − 1).
From the equivalent perspectives of maximizing the entropy and making the prob-
abilities as uniform as possible, it is clear that N , and hence p, should be as large
as possible so long as the probability of an infinite type is zero.

Viewing the reduction of an applicable elementary type to the required kind as
a series of reductions (i.e., apply another argument: yes/no; if yes, apply another
argument: yes/no; etc.), it is evident from the expression for qn that p and p̄ are
the probabilities of another argument and no more arguments, respectively, at each
step. From the principal of self-similarity, a depth-first application of arguments
gives

rn = pn−1p̄n,

4



where rn is the probability of a given type shape and n is the number of elementary
types in the final expression (n− 1 is the number of applications).

Let cn be the number of different type shapes composed from n elementary
types. It follows that

sn = cn rn = cn pn−1p̄n,

where sn is the probability of an arbitrary type shape being composed from n
elementary types. The sequence cn gives the number of ways n elementary types
can be parenthesized into groups of two (i.e., a partially applied type applied to its
next argument) and forms a series known as the shifted Catalan numbers.2

A recursive expression for cn follows by noting that the number of elementary
types to the left and right of the root must sum to n. Summing over all the ways
this can be done gives

cn = c1cn−1 + c2cn−2 + . . . + cn−2c2 + cn−1c1.

This summation is precisely that given by squaring the shifted generating function
c(x) and collecting equal powers of x. Combined with c1 = 1, this gives

c(x) =
∑
n

cn xn = x +
(∑

n

cn xn
)2

= x + c(x)2 =
1±
√

1− 4x

2
,

where the last expression is just an application of the quadratic equation to the
first and second-last expressions. The expression for the shifted Catalan series

cn =
(2(n− 1))!

n!(n− 1)!

follows by expanding the negative root in a power series. The negative root is
used as only it is applicable near x = 0 because c(0) = 0.

The shifted generating function also gives a way to write the probability of a
finite-length type∑

n

sn =
∑
n

cn pn−1p̄n =
c(pp̄)

p
=

1±
√

1− 4pp̄

2p
=

1± (2p− 1)

2p
.

The two branches give probabilities 1 and p̄/p. These two probabilities must
apply, respectively, to small and large values of p as the probability of a finite type

2The series is referred to as shifted because the Catalan numbers are usually indexed from 0.

5



must be 1 and 0, respectively, when p = 0 and p = 1. The bifurcation point occurs
when the two branches are equal at p = 1/2, giving

P[finite type] =

{
1 p ∈ [0, 1/2],

p̄/p p ∈ [1/2, 1].

It follows that the maximum values are p = 1/2 and N = 2.
The probability that a type shape is composed of n elementary types is then

rn =
1

22n−1
.

The factor of 1/2 is both the probability of an elementary type requiring at least
one more argument to reduce it to a required kind and an elementary type requiring
no more arguments to reduce it to a required kind.

2.2 Unconstrained Shapes
Type inferencing consists of starting with unconstrained types, that is, ones hav-
ing as of yet unspecified components, and progressively constraining these com-
ponents to more specific types until all the requirements are met. Components
that are never restricted to specific types give rise to polymorphic types, such as
the type of the list map function

∀a∀b (a→ b)→ [a]→ [b].

The universal quantification is understood to be over all types and is usually not
stated explicitly.

When a type has components that can range over all types, those components
in the type shape range over all type shapes. The probability of such an uncon-
strained type shape is given by summing over the probabilities given by letting the
unconstrained components range over every possible type shape. That is, an in-
complete type shape having n elementary types and m unconstrained types, with
each unconstrained type occurring mk times, has probability

rmn =
∑
n1

. . .
∑
nm

1

22n−1
cn1

(
1

22n1

)m1

. . . cnm

(
1

22nm

)mm

,

where m = (m1, . . . ,mm).

6



Moving the sums inward to their respective terms gives m terms of the form∑
nk

cnk

(
1

22nk

)mk

=
∑
n

cnk

(
1

22mk

)nk

= c(2−2mk) =
1±
√

1− 4 · 2−2mk

2
.

As the bifurcation point occurs at mk = 1 and the probability is 0 when mk =∞,
taking the negative root, simplifying a bit, and substituting back into the original
expression gives

rmn =
1

22n−1

m∏
k=1

1−
√

1− 2−2(mk−1)

2

for the probability of a type shape having n elementary types and m unconstrained
types, with each unconstrained type occurring mk times. When m = 0 this re-
duces to the previously defined rn.

2.3 Partially Constrained Shapes
In a language such as Haskell, it is also possible for types to be partially con-
strained. For example, a generalization of the list map functions is the functor
fmap function, whose type is

∀f∈F∀a∀b (a→ b)→ f a→ f b,

where F is the class of functor types. The type shapes fitting a profile such as this
can be no more than those fitting the form without class restrictions, and thus the
latter must form an upper bound on the probability of the former.

The question of probability reduction is ultimately one of type membership.
Given a class and a random type of a specific shape, is there reason to believe
membership should be more or less probable than non-membership or that the
answer to this should depend on the class in question? I would argue no for at
least three reasons.

• Each class of types is not closed. The programmer can add any number of
new members. Promoting membership or non-membership in specific or all
classes is to make complex assertions about the programmer and/or types
of programs.

• The class of classes of types is not closed. The programmer can create
any number of new classes about which the algorithm can have no prior
information and thus no reason for preference.

7



• Any special treatment of built-in classes (e.g., the Haskell Show class) can-
not evolve with the language as it would change how ambiguity is resolved,
breaking programs in which everything has not been manually resolved.

Without reason for preference of membership or non-membership for a ran-
dom type, the principal of indifference dictates making these equally probable.
This introduces an additional factor of 1/2 for each class membership require-
ment. The derivation remains basically the same as before because the additional
factors of 1/2 factor out of the sums. This gives

rm,w
n =

1

22n−1

m∏
k=1

1−
√

1− 2−2(mk−1)

2wk+1
,

as the probability of a given type shape having n elementary types and m uncon-
strained/partially constrained types, with each unconstrained/partially constrained
type having wk class membership requirements and occurring mk times. This re-
duces to the prior expression when w = 0.

3 Conclusion
No program can correctly resolve ambiguity more frequently than that which
chooses the most probable alternative under the circumstances. This paper presents
a very general and systematic argument for such a measure based on the principal
of indifference and the assumption that types are self-similar and of finite length.
Arguments for further assumptions are rejected for a variety of reasons, the most
significant likely being that against encoding in special cases. Doing so makes
only fully specified programs safe as any future additions or changes to these
cases will change resolution order.

Ambiguity resolution is a key feature of the function overloading and templat-
ing systems of a variety of languages. Mostly this has revolved around some ad
hoc method to pick a particular function or template body based on some def-
inition as to how well parameters match. In some sense, such systems define
a measure on types, but I am aware of no work arguing a strong basis for the
choices made in such systems. There have been a variety of rigorous measures
defined for the purpose of proving progression in type-inferencing algorithms. As
far as I know, the intent of these measures makes their form quite different from
that of this work.

8



Based on the arguments for the principal of indifference and the assumptions
of self-similarity and finiteness of length, I derive a closed-form solution for my
type measure. I then expand this closed-form solution to polymorphic/universally
quantified types by allowing the unconstrained components to vary over all type
shapes. Finally, based on similar arguments to those previously used, I allow for
type-class restrictions on the polymorphic/universal quantifications (as allowed
by Haskell). I believe the availability of such a well-founded measure opens the
door to a variety of interesting areas, including rigorously handling ambiguous
instances and types, and ordering type space for searching.

9


