

Quick-n-dirty ways to run
your serial code faster,

in parallel

Sergey Mashchenko
McMaster University

(SHARCNET)

Outline

● Foreword
● Parallel computing primer
● Running your code in parallel

● Serial farming
● Using pagecache to accelerate I/O bound code
● Automatic code parallelization
● Semi-automatic parallelization: OpenMP
● Semi-automatic parallelization: OpenACC

● Summary

Foreword

● This talk is not about optimizing / profiling a
serial code (compiler optimization flags etc.)

● Instead, this talk is about accelerating the
computations by running your serial code in
parallel.

● Only the simplest parallelization techniques are
considered; as a result, this will work well only
for some codes and problems.

Parallel computing primer

What is a parallel code?

● A code is parallel when it consists of multiple
processes running at the same time on multiple
compute resources (CPU or GPU cores).

● Optionally there may be a need for data
exchange (“communication”) between the
processes, often requiring synchronization
between processes.
● When no data exchange is needed, we have an

“embarrassingly parallel” case – or serial farming

Memory

● Memory-wise, two situations exist:
● When every process can access any byte of the

memory (“global address space”, “global memory”),
we have a “shared memory” situation.
– On a single cluster node
– “Device memory” on GPU

● If this is not the case, we have a “distributed
memory” situation.
– Between cluster nodes
– Between CPU and GPU

Programming models

● At a low level, three basic programming models
are in common use:
● Distributed memory model (MPI)
● Shared memory model (threads)
● GPU model (CUDA/OpenCL) – actually a special

case; a combination of distributed and shared
memory models (+ vector computing)

● In the rest of the talk, only higher level
approaches will be discussed; they are using
the above low level models under the hood.

Is parallel computing hard?

● There are many myths regarding parallel
computing, e.g.:
● Only “hard core” parallelization (converting a serial

code to MPI / CUDA / pthreads) is the true one
– Much simpler approaches considered here result in “true”

parallel codes, albeit less efficient in some cases
● It takes many months or even years to parallelize a

large serial code
– With the approaches considered here a conversion would

probably take less than a day

Caveats

● In a shared supercomputing resources environment
(SHARCNET), running your code in parallel needs to
be justified
● It takes longer to wait for N cores than to wait for a

single core, so if the speedup is not great, the total time
(queuing + running) can become larger for the parallel
version of the code.

● Also, very low parallel code efficiency is a waste of
resources
● A rule of thumb: running on N CPU cores, the speedup

should be at least 0.7*N
● For GPUs, the speedup should be at least ~10x.

Theory

● Using a parallel code on the same size problem
as the serial code usually results in low
efficiency (speedup)
● So-called Amdahl's law, or “strong scaling”

● The solution: use the parallel code on a larger
size problem (more grid elements; more
particles; more Monte Carlo steps; etc.)
● Gustafson's law (“weak scaling”)

● Serial farming does not suffer from these issues

Running your code in parallel

Serial farming

Definition

● Serial farming: running multiple copies of a serial code
on multiple CPU cores at the same time.

● In the simplest case, there are no data dependencies
– Meaning the final result does not depend on the order of

execution of the serial jobs.

● In more complex cases, there may be dependencies
between groups of serial jobs.

– E.g., don't start group 2 until all the jobs in group 1 are
finished.

– This can be handled by using inter-job dependency features of
the scheduler:

sqsub --waitfor=jobid[,jobid...]

Myths vs. reality

● “Serial farming is not parallel computing”: myth.
See the definition of a parallel code.

● “One should avoid using serial farming,
because it is embarrassingly parallel”: myth.
● Due to zero overhead (no communications), serial

farming should rather be called “perfectly parallel”.
– That is, when running on N cpu cores, the speedup is N

(100% efficiency).
● Also, the queuing time for say 128 serial farm jobs

is much shorter on average than for a “true” 128-
way parallel job.

Typical applications

● Monte-Carlo type simulations
– There is an implicit data dependency here: to make sure

that all serial jobs are using unique random number
sequences.

– This is not an impediment, and can be easily handled
(see the tutorial “Serial farming and Monte Carlo for
SHARCNET” on SHARCNET's Help Wiki).

● Model parameter study
– Model input parameters are often not precisely known, so

one has to run a set of simulations with the parameters
varying within the acceptable range.

Implementation

● One can use any scripting language (bash, perl, python, ...) to
write serial farm scripts – for job submission, queries, killing,
post-processing.

● This bash script handles the common situation when a serial
code has to run with a set of parameters, stored one line per job
in a file:

while read line
do
 sqsub -o out%J -r 7d ./code "$line" | cut -d" " -f4 >> jobid
done < input_parameters.dat

Then the whole job batch can be killed with

sqkill `cat jobid`

Running your code in parallel

Using pagecache to accelerate I/O bound code

Definition

● I/O bound code is the one where most of run
time is spent in reading from and/or writing to
the disk.

– Such codes waste lots of CPU cycles, and can overload
our file systems (making it very slow for everyone).

– This is especially true if these jobs are run as a serial
farm, on random nodes.

● But: if multiple processes read the same data
and run on the same node, the Linux feature
pagecache can dramatically accelerate
computations.

● No changes to the code needed!

Pagecache

● Pagecache is the cache of recent reads and writes, occupying
all the unused memory in a node. It is operated by the Linux
kernel.

● As long as there is enough of unused RAM to fit all the data
which are being read, the reading from the disk only occurs
once; all other code instances will get the data from the memory
cache, which is dramatically faster.

● Serial farm using the pagecache feature is essentially a single
multi-threaded parallel application, so one has to use the
threaded queue to submit such jobs, e.g.:

sqsub -q threaded -n 24 -o out ./job_script.sh

Here job_script.sh is a script launching 24 instances of the
serial code (see next slide).

Details

● for ((i=0; i<24; i++)); do ./code [args] &; done
 wait

● Caveat: asking for many cores on a single node can
result in a substantial queue wait time

– True for any multi-threaded application

● For a code reading extremely large amounts of data,
iqaluk is the best system to use

– Only 32 cores, but 1TB of RAM; currently no scheduler

● Success story: one group (climate modelling; 50,000
serial jobs, each one reading 1 TB of the same data)
got their results 25x faster, by switching from serial
farm on random orca nodes to using iqaluk.

Running your code in parallel

Automatic code parallelization

Compiler based parallelization

● Modern compilers can optionally compile your serial
code as a parallel (multi-threaded) code, in a fully
automatic fashion.

● Specifically, our intel compilers need -parallel option to
carry out auto-parallelization:

icc -O3 -parallel code.c
ifort -O3 -parallel code.f90

● Code compiled in this fashion is a “true” multi-
threaded application, and needs to be submitted to the
threaded queue, e.g.:

sqsub -q threaded -n 24 -o out -r 3d ./code

Details

● When running the code interactively (on a development
node), one can choose the number of threads to use by
assigning a value to this environment variable:

export OMP_NUM_THREADS=24

● Parallelization only targets loops, with no data
dependencies, and the number of iteration known at
compile time.

● -guide-par, used in conjunction with -parallel, causes the
compiler to generate advisory messages suggesting ways
the programmer might help the compiler to auto-parallelize
suitable loops. No object file is generated.

Running your code in parallel

Semi-automatic parallelization: OpenMP

Preamble

● Fully automatic parallelization is too limited to
be effective for most codes. Programmer can
achieve significantly better results by guiding
the parallelizing process.

● On CPU cores, the standard approach for semi-
automatic parallelization is OpenMP.

● OpenMP does require some modifications to
the code, but unlike “hard-core” approaches
(MPI, pthreads, CUDA), OpenMP allows for
incremental parallelism (the modified code still
can be compiled and used as a serial code).

Simplest case

● OpenMP supports a wide range of parallel
programming tools, but we will only consider
the simplest – loop parallelization:

#pragma omp parallel for // C language
 for (i = 0; i < N; i++)
 a[i] = 2 * i;

!$omp parallel do // Fortran
 do i = 1, N
 a(i) = 2 * i
 end do

Details

● By default, all variables in the work sharing
region are shared except the loop iteration
counter.

● Inside-loop variables which value depends on
the loop index should be declared as private:

!$omp parallel do private(A)
 do i = 1, N
 A = 2 * i – 1
 C(i) = sqrt(A)+log10(A)-log(A)
 end do

Compiling / running

● If OpenMP code is compiled without -openmp
switch, all OpenMP pragmas are ignored, and it
is compiled as a serial code.

● If you add -openmp switch, a multi-threaded
binary is generated. In intereactive use, the
environment variable OMP_NUM_THREADS is
used to specify the number of threads. When
submitting to the scheduler, the threaded queue
should be used:

 sqsub -q threaded -n 24 -o out -r 3d ./code

Running your code in parallel

Semi-automatic parallelization: OpenACC

Introduction

● OpenACC is an equivalent of OpenMP, for
GPU computing.

● SHARCNET has two GPU clusters:
● angel (44 older GPUs; not good for double

precision);
● monk (108 newer GPUs; good for double precision)

● Only one compiler – PGI – has openACC
support. To use it on angel/monk:

module unload intel
module load pgi

Simplest case

● As in OpenMP, the obvious targets for
OpenACC are data-independent loops.
Examples:

#pragma acc kernels loop // C language
 for (i = 0; i < N; i++)
 a[i] = 2 * i;

!$acc kernels loop // Fortran
 do i = 1, N
 a(i) = 2 * i
 end do

Caveat

● The important difference from OpenMP: as loops
which are being parallelized under OpenACC will have
to copy all the input/output data between CPU and
GPU via a relatively slow PCI-E link, the loop content
has to be CPU-intensive (flop/byte ratio has to be
high).
● Bad flop/byte ratio:

for (i=0; i<N; i++)
A[i] = B[i] + C[i];

● Better flop/byte ratio:
for (i=0; i<N; i++) {

A = 2*i – 1.0;
C[i] = sqrt(A) + log10(A) – log(A); }

Compiling / running

● To compile:

 pgcc -Minfo=accel -fast -v -acc code.c
 pgf90 -Minfo=accel -fast -v -acc code.f

● To run interactively (on monk dev node,
mon54):

./code
● To submit to the scheduler (angel, monk):

sqsub -q gpu -o out -r 1d ./code

Summary

Final remarks

● With the exception of plain serial farming, all
the considered parallelizing approaches result
in a multi-threaded code, and hence can only
be run on a single node (shared memory
environment).

● The first two methods (serial farming with and
without pagecache feature) require no source
code, and can be utilized with a binary code
(e.g. commercial).

● Only the last two methods (OpenMP and
OpenACC) require some code modifications.

Your research will benefit
from serial farming

Use serial farming

If I/O bound – do it pagecache friendly way

Good speedup with automatic
compiler based parallelization

Use automatic parallelization

Good speedup with a larger problem

Good speedup with semi-automatic
parallelization (OpenMP / OpenACC)

Use OpenMP / OpenACC

Good speedup with a larger problem

Resort to hard-core parallelization
(MPI / pthreads / CUDA

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

