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Foreword

● This talk is not about optimizing / profiling a 
serial code (compiler optimization flags etc.)

● Instead, this talk is about accelerating the 
computations by running your serial code in 
parallel.

● Only the simplest parallelization techniques are 
considered; as a result, this will work well only 
for some codes and problems.



  

Parallel computing primer



  

What is a parallel code?

● A code is parallel when it consists of multiple 
processes running at the same time on multiple 
compute resources (CPU or GPU cores).

● Optionally there may be a need for data 
exchange (“communication”) between the 
processes, often requiring synchronization 
between processes.
● When no data exchange is needed, we have an 

“embarrassingly parallel” case – or serial farming



  

Memory

● Memory-wise, two situations exist:
● When every process can access any byte of the 

memory (“global address space”, “global memory”), 
we have a “shared memory” situation. 
– On a single cluster node
– “Device memory” on GPU 

● If this is not the case, we have a “distributed 
memory” situation.
– Between cluster nodes
– Between CPU and GPU



  

Programming models

● At a low level, three basic programming models 
are in common use:
● Distributed memory model (MPI)
● Shared memory model (threads)
● GPU model (CUDA/OpenCL) – actually a special 

case; a combination of distributed and shared 
memory models (+ vector computing)

● In the rest of the talk, only higher level 
approaches will be discussed; they are using 
the above low level models under the hood.



  

Is parallel computing hard?

● There are many myths regarding parallel 
computing, e.g.:
● Only “hard core” parallelization (converting a serial 

code to MPI / CUDA / pthreads) is the true one
– Much simpler approaches considered here result in “true” 

parallel codes, albeit less efficient in some cases
● It takes many months or even years to parallelize a 

large serial code
– With the approaches considered here a conversion would 

probably take less than a day



  

Caveats

● In a shared supercomputing resources environment 
(SHARCNET), running your code in parallel needs to 
be justified
● It takes longer to wait for N cores than to wait for a 

single core, so if the speedup is not great, the total time 
(queuing + running) can become larger for the parallel 
version of the code.

● Also, very low parallel code efficiency is a waste of 
resources
● A rule of thumb: running on N CPU cores, the speedup 

should be at least 0.7*N
● For GPUs, the speedup should be at least ~10x.



  

Theory

● Using a parallel code on the same size problem 
as the serial code usually results in low 
efficiency (speedup)
● So-called Amdahl's law, or “strong scaling”

● The solution: use the parallel code on a larger 
size problem (more grid elements; more 
particles; more Monte Carlo steps; etc.)
● Gustafson's law (“weak scaling”)

● Serial farming does not suffer from these issues



  

Running your code in parallel

Serial farming



  

Definition

● Serial farming: running multiple copies of a serial code 
on multiple CPU cores at the same time.

● In the simplest case, there are no data dependencies
– Meaning the final result does not depend on the order of 

execution of the serial jobs.

● In more complex cases, there may be dependencies 
between groups of serial jobs.

– E.g., don't start group 2 until all the jobs in group 1 are 
finished.

– This can be handled by using inter-job dependency features of 
the scheduler:

sqsub --waitfor=jobid[,jobid...]



  

Myths vs. reality

● “Serial farming is not parallel computing”: myth. 
See the definition of a parallel code.

● “One should avoid using serial farming, 
because it is embarrassingly parallel”: myth. 
● Due to zero overhead (no communications), serial 

farming should rather be called “perfectly parallel”.
– That is, when running on N cpu cores, the speedup is N 

(100% efficiency).
● Also, the queuing time for say 128 serial farm jobs 

is much shorter on average than for a “true” 128-
way parallel job.



  

Typical applications

● Monte-Carlo type simulations
– There is an implicit data dependency here: to make sure 

that all serial jobs are using unique random number 
sequences.

– This is not an impediment, and can be easily handled 
(see the tutorial “Serial farming and Monte Carlo for 
SHARCNET” on SHARCNET's Help Wiki).

● Model parameter study
– Model input parameters are often not precisely known, so 

one has to run a set of simulations with the parameters 
varying within the acceptable range.



  

Implementation

● One can use any scripting language (bash, perl, python, ...) to 
write serial farm scripts – for job submission, queries, killing, 
post-processing.

● This bash script handles the common situation when a serial 
code has to run with a set of parameters, stored one line per job 
in a file:

while read line
do
   sqsub  -o out%J  -r 7d  ./code "$line" | cut -d" " -f4 >> jobid
done  < input_parameters.dat

Then the whole job batch can be killed with

sqkill  `cat jobid`
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Using pagecache to accelerate I/O bound code



  

Definition

● I/O bound code is the one where most of run 
time is spent in reading from and/or writing to 
the disk.

– Such codes waste lots of CPU cycles, and can overload 
our file systems (making it very slow for everyone).

– This is especially true if these jobs are run as a serial 
farm, on random nodes.

● But: if multiple processes read the same data 
and run on the same node, the Linux feature 
pagecache can dramatically accelerate 
computations.

● No changes to the code needed!



  

Pagecache

● Pagecache is the cache of recent reads and writes, occupying 
all the unused memory in a node. It is operated by the Linux 
kernel.

● As long as there is enough of unused RAM to fit all the data 
which are being read, the reading from the disk only occurs 
once; all other code instances will get the data from the memory 
cache, which is dramatically faster.

● Serial farm using the pagecache feature is essentially a single 
multi-threaded parallel application, so one has to use the 
threaded queue to submit such jobs, e.g.:

sqsub -q threaded -n 24  -o out  ./job_script.sh

Here job_script.sh is a script launching 24 instances of the 
serial code (see next slide).



  

Details

●    for ((i=0; i<24; i++)); do ./code [args] &; done
   wait

● Caveat: asking for many cores on a single node can 
result in a substantial queue wait time 

– True for any multi-threaded application

● For a code reading extremely large amounts of data, 
iqaluk is the best system to use

– Only 32 cores, but 1TB of RAM; currently no scheduler

● Success story: one group (climate modelling; 50,000 
serial jobs, each one reading 1 TB of the same data) 
got their results 25x faster, by switching from serial 
farm on random orca nodes to using iqaluk.
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Automatic code parallelization



  

Compiler based parallelization

● Modern compilers can optionally compile your serial 
code as a parallel (multi-threaded) code, in a fully 
automatic fashion.

● Specifically, our intel compilers need -parallel option to 
carry out auto-parallelization:

icc -O3 -parallel code.c
ifort -O3 -parallel code.f90

● Code compiled in this fashion is a “true” multi-
threaded application, and needs to be submitted to the 
threaded queue, e.g.:

sqsub -q threaded -n 24 -o out -r 3d ./code



  

Details

● When running the code interactively (on a development 
node), one can choose the number of threads to use by 
assigning a value to this environment variable:

export OMP_NUM_THREADS=24

● Parallelization only targets loops, with no data 
dependencies, and the number of iteration known at 
compile time.

● -guide-par, used in conjunction with -parallel, causes the 
compiler to generate advisory messages suggesting ways 
the programmer might help the compiler to auto-parallelize 
suitable loops. No object file is generated.
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Semi-automatic parallelization: OpenMP



  

Preamble

● Fully automatic parallelization is too limited to 
be effective for most codes. Programmer can 
achieve significantly better results by guiding 
the parallelizing process.

● On CPU cores, the standard approach for semi-
automatic parallelization is OpenMP.

● OpenMP does require some modifications to 
the code, but unlike “hard-core” approaches 
(MPI, pthreads, CUDA), OpenMP allows for 
incremental parallelism (the modified code still 
can be compiled and used as a serial code).



  

Simplest case

● OpenMP supports a wide range of parallel 
programming tools, but we will only consider 
the simplest – loop parallelization:

#pragma omp parallel for      // C language
    for (i = 0; i < N; i++)
        a[i] = 2 * i;

!$omp parallel do     // Fortran
    do i = 1, N
         a(i) = 2 * i
         end do



  

Details

● By default, all variables in the work sharing 
region are shared except the loop iteration 
counter.

● Inside-loop variables which value depends on 
the loop index should be declared as private:

!$omp parallel do private(A)
        do i = 1, N
        A = 2 * i – 1
        C(i) = sqrt(A)+log10(A)-log(A)
        end do



  

Compiling / running

● If OpenMP code is compiled without -openmp 
switch, all OpenMP pragmas are ignored, and it 
is compiled as a serial code.

● If you add -openmp switch, a multi-threaded 
binary is generated. In intereactive use, the 
environment variable OMP_NUM_THREADS is 
used to specify the number of threads. When 
submitting to the scheduler, the threaded queue 
should be used:

 sqsub -q threaded -n 24 -o out -r 3d ./code
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Semi-automatic parallelization: OpenACC



  

Introduction

● OpenACC is an equivalent of OpenMP, for 
GPU computing.

● SHARCNET has two GPU clusters:
● angel (44 older GPUs; not good for double 

precision);
● monk (108 newer GPUs; good for double precision)

● Only one compiler – PGI – has openACC 
support. To use it on angel/monk:

module unload intel
module load pgi



  

Simplest case

● As in OpenMP, the obvious targets for 
OpenACC are data-independent loops. 
Examples:

#pragma acc kernels loop      // C language
    for (i = 0; i < N; i++)
        a[i] = 2 * i;

!$acc kernels loop     // Fortran
    do i = 1, N
         a(i) = 2 * i
         end do



  

Caveat

● The important difference from OpenMP: as loops 
which are being parallelized under OpenACC will have 
to copy all the input/output data between CPU and 
GPU via a relatively slow PCI-E link, the loop content 
has to be CPU-intensive (flop/byte ratio has to be 
high).
● Bad flop/byte ratio:

for (i=0; i<N; i++)
A[i] = B[i] + C[i];

● Better flop/byte ratio:
for (i=0; i<N; i++)  {

A = 2*i – 1.0;
C[i] = sqrt(A) + log10(A) – log(A);  }



  

Compiling / running

● To compile:   

   pgcc -Minfo=accel -fast -v -acc code.c
   pgf90 -Minfo=accel -fast -v -acc code.f

● To run interactively (on monk dev node, 
mon54):

./code
● To submit to the scheduler (angel, monk):

sqsub -q gpu -o out -r 1d  ./code



  

Summary



  

Final remarks

● With the exception of plain serial farming, all 
the considered parallelizing approaches result 
in a multi-threaded code, and hence can only 
be run on a single node (shared memory 
environment).

● The first two methods (serial farming with and 
without pagecache feature) require no source 
code, and can be utilized with a binary code 
(e.g. commercial).

● Only the last two methods (OpenMP and 
OpenACC) require some code modifications.



  

Your research will benefit
from serial farming

Use serial farming

If I/O bound – do it pagecache friendly way

Good speedup with automatic
compiler based parallelization

Use automatic parallelization

Good speedup with a larger problem

Good speedup with semi-automatic
parallelization (OpenMP / OpenACC)

Use OpenMP / OpenACC

Good speedup with a larger problem

Resort to hard-core parallelization
(MPI / pthreads / CUDA

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No
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