

Profiling MPI codes with Allinea's MAP

Sergey Mashchenko
McMaster University, SHARCNET

Overview

● Introduction
● Using MAP
● Demonstration

Introduction

● Profiling is an important part of code
development
– Almost as important as debugging; can be

considered as “code performance debugging”

– If writing a new code from scratch, profiling of new
code blocks should be done continuously, alongside
debugging: “performance bugs” made at the early
code development stages will be hard or impossible
to fix when the code is finished.

– If converting a serial code to a parallel one (threads,
MPI, CUDA, ...), profiling the serial code can be
crucial in guiding the parallelization efforts.

Example: serial code profiling

● The serial code was profiled before its
conversion to CUDA

● Profiling identified the ~85% of the code readily
available for parallelization, and the next 10-14%
which could be converted with more efforts

● The plot was generated using these commands:
– gcc -pg ... -o code

– ./code

– gprof ./code | gprof2dot.py | dot -Tpng -o output.png

MPI profiling in SHARCNET

● SHARCNET web portal lists three officially
supported MPI profilers:
– OPT: the old product from Allinea, installed only

on requin, not usable for realistically large MPI
jobs (say, >8 cores for >30 minutes).

– IPM: open source profiler

– MAP: new profiler from Allinea, installed on orca;
integrated with their parallel debugger DDT

MAP overview

● Integrated with DDT debugger – makes it easier to
go back and forth between profiling and debugging

● Uses statistical sampling (~1000 samples per rank
by default) to dramatically accelerate the profiling
process

● As a result, the profiler's overhead is <5%
● Polished and convenient to use GUI
● No need to recompile the code (needs to be

compiled with “-g” - same as for debugging)
● Installed on orca, license for 512 MPI ranks

Using MAP

● Interactive use instructions (works for up to 24
cores):
– ssh orca

– ssh orc-dev1 (or dev2, dev3, dev4)

– top (check if the node is busy; no point profiling your
code on a busy node)

– module load ddt

– compile your code with “-O2 -g” switches (or -O3)

– map ./code [arguments]

● Interactive analysis, plus *.map is written which
can be analyzed later.

● Non-interactive use instructions (for up to 512
cores):
– ssh orca

– compile your code with “-O2 -g” switches (or -O3)

– module load ddt

– sqsub -q mpi -o out -r 1h --nompirun -n 2 map -profile -n
2 ./code [args]

● The *.map file produced during both interactive and
non-interactive runs can be later analyzed via
– map code.map

MAP requires an X window client

● The GUI part of MAP requires an X window
client on your computer
– Already present under Linux and Mac

– Under Windows, a third party software is required

– Mobaxterm is a good (and free) solution for
Windows, as it combines three applications in one
(ssh, sftp, and X window clients):

http://mobaxterm.mobatek.net

Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13

