Profiling MPI codes with Allinea’'s MAP

Sergey Mashchenko
McMaster University, SHARCNET

Overview

e |[ntroduction
* Using MAP
e Demonstration

INt

* Profiling is an impo
development

roduction

rtant part of code

- Almost as important as debugging; can be

considered as “cod
— If writing a hew coc

e performance debugging”
e from scratch, profiling of new

code blocks shoulo

be done continuously, alongside

debugging: “performance bugs” made at the early

code development

stages will be hard or impossible

to fix when the code is finished.

- If converting a serial code to a parallel one (threads,
MPI, CUDA, ...), profiling the serial code can be
crucial in guiding the parallelization efforts.

Example: serial code profiling

3.19%
G344646=

[096% | 0.26%
| 6358145%| 4285775x

\ 2.72% 0.36% 0.21% IIIIII 0.28%
/' 18079048% 5966431% 27848817= ||21954-BEE>¢
|

ray_bender
B7.14%

(8.19%) (0.61°

579529120% | }

| |

49.93% f

38877H0L14x “

1.25% I.'rlr 3.58% H‘n 2.43%

555113482% | 1168104 H"-.|5[]284-2>¢

29.38%
3912851037=

surface_ray intersection
29.59°9

3940700854x
12 .04%

* The serial code was profiled before its
conversion to CUDA

* Profiling identified the ~85% of the code readily
available for parallelization, and the next 10-14%
which could be converted with more efforts

* The plot was generated using these commands:

— gcc -pg ... -0 code

— ./code
— gprof ./code | gprof2dot.py | dot -Tpng -o output.png

MPI profiling in SHARCNET

« SHARCNET web portal lists three officially
supported MPI profilers:

- OPT: the old product from Allinea, installed only
on requin, not usable for realistically large MPI
jobs (say, >8 cores for >30 minutes).

- IPM: open source profiler

- MAP: new profiler from Allinea, installed on orca;
iIntegrated with their parallel debugger DDT

MAP overview

 Integrated with DDT debugger — makes it easier to
go back and forth between profiling and debugging

» Uses statistical sampling (~1000 samples per rank
by default) to dramatically accelerate the profiling
process

* As a result, the profiler's overhead is <5%
 Polished and convenient to use GUI

* No need to recompile the code (needs to be
compiled with “-g” - same as for debugging)

e |nstalled on orca, license for 512 MPI ranks

Fle View Search

Wwindow Help

Profiled: wave_c on 24 processes Started: Thu Feb 13 11:14:16 2014

Memory usage (M)
112 - 271

MPI call duration (ms)
0 - 9.4

CPU floating-point (%)
1] - 100

{158 avg)

(0.4 avg)

Runtime: 29s Time in MPI: 47%

Hide Metrics...

{14 avg) o

11:14:16-11:14:45 (29.0665): Mean: Memory usage 15.8 M; MP| call duration 0.4 ms; CPU floating-point 14.3 %;

Metrics,' Reset |

L wavec [|
2.5% 187 B for (j = 1; j <= npoints; j++)
198 {
199 /* global endpoints */
1.6% 200 if ((first + j - 1 == 1) || (first + j - 1 == tpoints))
1.1% 201 newval[j] = 0.0;
202 else
25.2% . 2083 do_math{j);
204 1
1.0% 205 2 for (j = 1; j <= npoints; j+t)
206 {
10.9% 207 oldval[j] = values[]];
10.4% - 208 values[j] = newval[]];
209 1
210 H
211 }
212 allt = (end.tv_sec - start.tw_sec) * 1000080 + (end.tv_nsec - start.tv_nsec) / 1000;
213 double calculation_rate = ((double)tpoints / (double)allt) * iterations; /* in million points per second */
214 if (rank == 0) printf("points / second: %.1fM (%.1fM per process)hn", calculation_rate, calculation_rate / ntask);
215 double efficiency = (double)(allt - communication_usec) / (double)allt;
216 reduce_print("compute / communicate efficiency: %d¥%¥% | %d¥%% | %d¥%\n", (int)(1@@ * efficiency + 8.5));
217
218 !

Input/Output | Project Files

Parallel Stack View |

Parallel Stack View 8 X
Time W | MPI |Fur'|ctior1(sl on line |Snurce |Position |
=l main wave.c:282
= update update(left, right); wave.c:308
35.6% 35.6% ~ MPI_Recv MPI_Recv(&values[®], 1, MPI_DOUBLE, left, E_LtoR, MPI_COMM_WORLD, wave.c:175
25.2% # do_math do_math({j); wave.c:203
10.9%
10.7% 10.7% - MPI_Recv MPI_Recv(&values[npoints+1], 1, MPI_DOUBLE, right, E_RtoL, wave.c:181
10.4% - values[j] = newwal[j]; wave.c:208
2.5% for {j = 1; j == npoints; j++) wave.c:197
1.6% i if ((first + j - 1 == 1) || (First + j - 1 == tpoints)) wave.c:200
1.1% newval[j] = 0.8; wave.c:201
1.0% for {j = 1; j == npoints; j++) wave.c:205
0.8% 7 7 others
<0.1% 1 B 4 others

Showing data from 24000 samples taken over 24 processes (1000 per process)

Allinea MAP 4.2-34404 A

Using MAP

* |Interactive use instructions (works for up to 24
cores).

- ssh orca
- ssh orc-devl (or dev2, dev3, dev4)

- top (check if the node is busy; no point profiling your
code on a busy node)

- module load ddt
— compile your code with “-O2 -g” switches (or -O3)
- map ./code [arguments]

 |nteractive analysis, plus *.map is written which
can be analyzed later.

* Non-interactive use instructions (for up to 512
cores):

- ssh orca
- compile your code with “-O2 -g” switches (or -O3)
- module load ddt

- sgsub -g mpi -0 out -r 1h --nompirun -n 2 map -profile -n
2 ./code [args]

* The *.map file produced during both interactive and
non-interactive runs can be later analyzed via

- map code.map

MAP requires an X window client

* The GUI part of MAP requires an X window
client on your computer

- Already present under Linux and Mac
- Under Windows, a third party software is required

- Mobaxterm is a good (and free) solution for
Windows, as it combines three applications in one
(ssh, sftp, and X window clients):

http://mobaxterm.mobatek.net

Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13

