
Parallel Computing: Overview

Jemmy Hu

SHARCNET
University of Waterloo

March 1, 2007

Contents

• What is Parallel Computing?

• Why use Parallel Computing?

• Flynn's Classical Taxonomy

• Parallel Computer Memory Architectures

• Parallel Computing – problem faced

• Parallel Computing – software programming model

- MPI

- OpenMP

• Demo

What is Parallel Computing?
Traditionally, software has been written for serial computation:
• To be run on a single computer having a single Central
Processing Unit (CPU);

• A problem is broken into a discrete series of instructions.
• Instructions are executed one after another.
• Only one instruction may execute at any moment in time.

In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem.
• To be run using multiple CPUs
• A problem is broken into discrete parts that can be solved concurrently
• Each part is further broken down to a series of instructions
• Instructions from each part execute simultaneously on different CPUs

Why use Parallel Computing?

• The primary reasons for using parallel computing:
- Save time - wall clock time
- Solve larger problems
- Provide concurrency (do multiple things at the same time)

• Other reasons might include:
- Taking advantage of non-local resources - using available
compute resources on a wide area network, or even the Internet
when local compute resources are scarce.

- Cost savings - using multiple "cheap" computing resources
instead of paying for time on a supercomputer.

- Overcoming memory constraints - single computers have very
finite memory resources. For large problems, using the
memories of multiple computers may overcome this obstacle.

Flynn's Classical Taxonomy
• Flynn's taxonomy distinguishes multi-processor computer architectures

according to how they can be classified along the two independent
dimensions of Instruction and Data. Each of these dimensions can have
only one of two possible states: Single or Multiple.

• The matrix below defines the 4 possible classifications according to Flynn.

M I M D
Multiple Instruction,
Multiple Data

M I S D
Multiple Instruction,
Single Data

S I M D
Single Instruction,
Multiple Data

S I S D
Single Instruction,
Single Data

Single Instruction, Single Data (SISD):

• A serial (non-parallel) computer
• Single instruction: only one

instruction stream is being acted
on by the CPU during any one
clock cycle

• Single data: only one data stream
is being used as input during any
one clock cycle

• Deterministic execution
• This is the oldest and until

recently, the most prevalent form
of computer

• Examples: most PCs, single CPU

workstations and mainframes

Single Instruction, Multiple Data (SIMD):

• A type of parallel computer
• Single instruction: All

processing units execute the
same instruction at any given
clock cycle

• Multiple data: Each processing
unit can operate on a different
data element

• This type of machine typically
has an instruction dispatcher,
a very high-bandwidth internal
network, and a very large array
of very small-capacity
instruction units.

• Best suited for specialized
problems characterized by a
high degree of regularity,such
as image processing.

Multiple Instruction, Single Data (MISD):

• A single data stream
is fed into multiple
processing units.

• Each processing unit
operates on the data
independently via
independent
instruction streams.

• Few actual examples
of this class of parallel
computer have ever
existed. One is the
experimental
Carnegie-Mellon
C.mmp computer
(1971).

Multiple Instruction, Multiple Data (MIMD):

• Currently, the most common
type of parallel computer. Most
modern computers fall into this
category.

• Multiple Instruction: every
processor may be executing a
different instruction stream

• Multiple Data: every processor
may be working with a different
data stream

• Execution can be synchronous
or asynchronous, deterministic
or non-deterministic

• Examples: most current
supercomputers, networked
parallel computer "grids" and
multi-processor SMP
computers - including some
types of PCs.

• A communication network to connect inter-processor memory
• Processors have their own local memory. Memory addresses in one processor do not map

to another processor, so there is no concept of global address space across all processors.
• When a processor needs access to data in another processor, it is usually the task of the

programmer to explicitly define how and when data is communicated. Synchronization
between tasks is likewise the programmer's responsibility.

• The network "fabric" used for data transfer varies widely, though it can be as simple as
Ethernet.

Parallel Computer Memory Architectures

Distributed Memory (Beowulf Cluster)

Shared Memory (SMP solution)

• Shared memory parallel computers vary widely, but generally have in common the
ability for all processors to access all memory as global address space.

• Multiple processors can operate independently but share the same memory resources.
• Changes in a memory location effected by one processor are visible to all other

processors.
• Shared memory machines can be divided into two main classes based upon memory

access times: UMA and NUMA.

Hybrid Distributed-Shared Memory (Cluster solution)

• Employ both shared and distributed memory architectures
• The shared memory component is usually a cache coherent SMP machine. Processors

on a given SMP can address that machine's memory as global.
• The distributed memory component is the networking of multiple SMPs. SMPs know

only about their own memory - not the memory on another SMP. Therefore, network
communications are required to move data from one SMP to another.

• Current trends seem to indicate that this type of memory architecture will continue to
prevail and increase at the high end of computing for the foreseeable future.

• Advantages and Disadvantages: whatever is common to both shared and distributed
memory architectures.

Parallel Computing – problem faced

• Hardware
– in order to facilitate processors working together they must be able

to communicate
– interconnect hardware is complex

• sharing memory is easy to say, harder to realize as system
scales

• communication over any kind of network is still painfully slow
compared to bus speed --- overhead can be significant

• Software
– parallel algorithms are actually fairly well understood
– the realization of algorithms in software is non-trivial
– compilers

• automated parallelism is difficult
– design

• portability and power are typically at odds with each other

Parallel Computing – software
programming model

• Distributed memory systems
– For processors to share data, the programmer must explicitly

arrange for communication -“Message Passing”
– Message passing libraries:

• MPI (“Message Passing Interface”)
• PVM (“Parallel Virtual Machine”)

• Shared memory systems
– “Thread” based programming (pthread, …)
– Compiler directives (OpenMP)
– Can also do explicit message passing, of course

MPI

Message Passing Interface

http://www.mpi-forum.org/

http://www-unix.mcs.anl.gov/mpi/index.htm

MPI: What is it?
• Library providing message passing support for parallel/distributed

applications

– not a language: collection of subroutines (Fortran),
functions/macros (C)

– explicit communication between processes

• Advantages

– standardized

– scalability generally good

– memory is local to a process (debugging/performance)

• Disadvantages

– more complex than implicit techniques

– communication overhead

Message passing Model

• The message passing model demonstrates the following
characteristics:
- A set of tasks that use their own local memory during computation.
multiple tasks can reside on the same physical machine as well
across an arbitrary number of machines.

- Tasks exchange data through communications by sending and
receiving messages.

- Data transfer usually requires cooperative operations to be
performed by each process. For example, a send operation must
have a matching receive operation.

MPI Programming Basics
• Basic functionality, the ability to:

– Start Processes

– Send Messages

– Receive Messages

– Synchronize

• Core Functions
– MPI_Init()

– MPI_Finalize()

– MPI_Comm_rank()

– MPI_Comm_size()

– MPI_Send()

– MPI_Recv()

– MPI_BCAST()

– MPI_REDUCE()

MPI library

• Include MPI header file
– C

include “mpi.h”

– C++

• include “mpiCC.h” or “mpi++.h”

– Fortran

• include “mpif.h”

• Compile with MPI library
– mpicc

– mpicxx or mpiCC

– mpif77 or mpif90

Example in C: MPI Hello, world!

#include <stdio.h>
#include “mpi.h”

int main(int argc, char *argv[])
{

int rank, size;

MPI_Init(&argc, &argv); /* starts MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &rank); /* get current process id */
MPI_Comm_size(MPI_COMM_WORLD, &size); /* get number of processes */

printf(“Hello, world! from process %d of %d\n”, rank, size);

MPI_Finalize(); /* end of mpi*/

return(0);
}

Example in C++: MPI Hello, world!

#include <iostream.h>
#include "mpi++.h"

int main(int argc, char *argv[])
{

MPI::Init(argc, argv);

int rank = MPI::COMM_WORLD.Get_rank();
int size = MPI::COMM_WORLD.Get_size();

cout << "Hello World! From process " << rank << " of " << size << endl;

MPI::Finalize();
return(0);

}

• Compile
mpicc -o helloworld_mpi helloworld_mpi.c

• Submit a mpi job
qsub helloworld_mpi.run

• Run Result (use 4 cpus)
Hello, world! from process 0 of 4
Hello, world! from process 1 of 4
Hello, world! from process 2 of 4
Hello, world! from process 3 of 4

helloworld_mpi.run is:

#!/bin/bash
#PBS -l nodes=1:ppn=4
#PBS -o helloworld_mpi.log_1_4
#PBS -j oe
#
cd /home/jemmyhu/jeffclass/mpi/
mpirun -np 4 -machinefile $PBS_NODEFILE ./helloworld_mpi

Compile and Run result on watsci1

OpenMP: Concepts

http://www.openmp.org

Open specifications for Multi Processing

OpenMP: What is it?

• An Application Program Interface (API) that may be used to explicitly
direct multi-threaded, shared memory parallelism

• Using compiler directives, library routines and environment
variables to automatically generate threaded (or multi-process) code
that can run in a concurrent or parallel environment.

• Portable:
- The API is specified for C/C++ and Fortran
- Multiple platforms have been implemented including most Unix

platforms and Windows NT

• Standardized: Jointly defined and endorsed by a group of major
computer hardware and software vendors

OpenMP: Fork-Join Model

• OpenMP uses the fork-join model of parallel execution:

FORK: the master thread then creates a team of parallel threads
The statements in the program that are enclosed by the parallel region
construct are then executed in parallel among the various team threads

JOIN: When the team threads complete the statements in the parallel
region construct, they synchronize and terminate, leaving only the
master thread

C / C++ - General Code Structure

#include <omp.h>

main () {
int var1, var2, var3;

Serial code
. . .

Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel section executed by all threads
. . .
All threads join master thread and disband

}

Resume serial code
. . .

}

OpenMP: compiler

Examples:
gcc4 –fopenmp –o myopenmp.exe myopenmp.c
icc –openmp –o hello_openmp hello_openmp.c

-fopenmpGNU (gcc4, gfortran)

-mpPGI (pgcc, pgf77, pgf90)

-openmpPathscale (pathcc, pathf90)

-openmpIntel (icc, ifort)

OpenMP flagCompiler

OpenMP: simplest example

program hello
write(*,*) "before"
!$omp parallel

write(*,*) "Hello, parallel world!"
!$omp end parallel
write(*,*) "after"

end program

Before

Hello, parallel world!
Hello, parallel world!
Hello, parallel world!
Hello, parallel world!

after

OpenMP example-1: hello world in C

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[]) {
int id, nthreads;
#pragma omp parallel private(id)
{

id = omp_get_thread_num();
printf("Hello World from thread %d\n", id);
#pragma omp barrier
if (id == 0) {

nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}
return 0;

}

Compile and Run result on watsci1

[jemmyhu@watsci1 my_runs]$ gcc4 -fopenmp -o helloworld helloworld.c

[jemmyhu@watsci1 my_runs]$ export OMP_NUM_THREADS=4
[jemmyhu@watsci1 my_runs]$./helloworld
Hello World from thread 3
Hello World from thread 0
Hello World from thread 1
Hello World from thread 2
There are 4 threads
[jemmyhu@watsci1 my_runs]$

MPI vs. OpenMP

http://www.science.uwaterloo.ca/~j8hu/Teaching_Cluster/mpi+smp.swf

#include <stdio.h>
#include <omp.h> /* OpenMP header file*/
#define NUM_STEPS 100000000
int main(int argc, char *argv[]) {

int i, nthreads;
double x, pi, sum = 0.0;
double step = 1.0/(double) NUM_STEPS;
start_time = omp_get_wtime();
#pragma omp parallel
{

nthreads = omp_get_num_threads();
#pragma omp for private(x) reduction(+:sum) schedule(runtime)
for (i=0; i < NUM_STEPS; ++i) {

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
#pragma omp master
{

pi = step * sum;
}

}
end_time = omp_get_wtime();
printf("parallel program results with %d threads:\n", nthreads);
printf("pi = %g (%17.15f)\n",pi, pi);
printf("time to compute = %g seconds\n", end_time - start_time);
return 0;

}

pi – OpenMP version

parallel program results with 4 threads:
pi = 3.14159 (3.141592653589683)
time to compute = 0.201562 seconds

sequential program results:
pi = 3.14159 (3.141592653590022)
time to compute = 0.858833 seconds

Compile and Run on Sharcnet

Compile on whale
cc -openmp –o pi-par-omp pi-par-omp.c

Run results on whale:

Watsci1 does not work well for openmp timing currently:
/home/jemmyhu/jeffclass/openmp/my_runs

Serial (1 cpu):

Parallel (4 cpus):

/home/jemmyhu/Courses/CES706/openmp/C/pi/timing

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h> /* MPI header file */
#define NUM_STEPS 100000000

int main(int argc, char *argv[]) {
int nprocs;
int myid;
double start_time, end_time;
int i;
double x, pi;
double sum = 0.0;
double step = 1.0/(double) NUM_STEPS;

/* initialize for MPI */
MPI_Init(&argc, &argv); /* starts MPI */

/* get number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

/* get this process's number (ranges from 0 to nprocs - 1) */
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

pi – MPI version

/* record start time */
start_time = MPI_Wtime();

/* do computation */
for (i=myid; i < NUM_STEPS; i += nprocs) { /* changed */

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
sum = step * sum; /* changed */
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);/* added */

/* record end time */
end_time = MPI_Wtime();

/* print results */
if (myid == 0) {

printf("parallel program results with %d processes:\n", nprocs);
printf("pi = %g (%17.15f)\n",pi, pi);
printf("time to compute = %g seconds\n", end_time - start_time);

}

/* clean up for MPI */
MPI_Finalize();

return 0;
}

parallel program results with 4 processes:
pi = 3.14159 (3.141592653590217)
time to compute = 0.289062 seconds

sequential program results:
pi = 3.14159 (3.141592653590426)
time to compute = 0.867188 seconds

Compile and Run on watsci1

Compile on watsci1
mpicc –o pi-par-mpi pi-par-mpi.c

Run results on watsci1:

/home/jemmyhu/jeffclass/mpi/my_runs

Serial (1 cpu):

Parallel (4 cpus):

Demo/Hand-on exercise

• logon to watsci1

• cp files (codes) from
/home/jemmyhu/jeffclass/mpi/source
/home/jemmyhu/jeffclass/openmp/source

• compile and run on watsci1

References

• http://www.llnl.gov/computing/tutorials/parallel_comp/

• http://cacs.usc.edu/education/cs596/06OMP.pdf

