Gaussian Usage on SHARCNET clusters

Jemmy Hu SHARCNET, November, 2010

Availability (January 01, 2011 -)

Version	Cluster	Queue
G09_B.01	orca, saw, whale	threaded, serial
G03_E.01	orca, saw, whale	threaded, serial

Recommended processors (CPUs) per G09 job at SHARCNET

Method \Cluster	orca	whale	saw	queue
DFT (b3lyp, etc)	8	4	8	threaded
MP (2, 3, 4)	4	4	8	threaded
CI (cis, cid, cisd, qcisd)	1	1	1	serial
CC (ccd, ccsd, ccsd(t))	1	1	1	serial

Usage on orca (torque queue, same as goblin):

sqsub –**q** threaded –**n** cpus –**r** runtime --mpp=memory(g) –**o** *.out g09 *.com (Gaussian output is in *.log. replace 'g09' with 'g03' to run G03_E.01)

Example for serial job (1 cpu, 3 days runtime, 4g memory, inputfile: name.com) **sqsub -r 3.0d --mpp=4g -o name.out g09 name.com** Example for threaded job (4 cpus, 3 days runtime, 4g memory) **sqsub -q threaded -n 4 -r 3.0d --mpp=4g -o name.out g09 name.com** (recommend -n 4 for MPx jobs, -n 8 for DFT jobs on orca)

Usage on saw and whale (LSF queue, same as bull)

sqsub –q threaded –n cpus –r runtime –o *.log g09 *.com (replace 'g09' with 'g03' to run G03_E.01)

Example for serial job sqsub -r 7.0d -o name.log g09 name.com Example for threaded job on whale (4 cpus) sqsub -q threaded -n 4 -r 3.0d -o name.log g09 name.com Example for threaded job on saw (8 cpus) sqsub -q threaded -n 8 -r 3.0d -o name.log g09 name.com

General Notes:

- 1. cpus (-n cpus) in sqsub should match the %nproc=cpus specified in *.com file (default is 1)
- 2. always run serial (1 cpu) jobs for CI and CC based methods
- 3. use a good estimate runtime. max. is 7 days, use BLCR for longer than 7 days jobs
- 4. --mpp is different from % mem, see our Gaussian software page for detail descriptions
- 5. due to the nature of LSF scheduler, use -n 4 on whale, -n 8 on saw for DFT and MPx jobs
- 6. run job out of your /work directory. on whale, use /gwork may have better performance.

More detail instructions can be found at https://www.sharcnet.ca/my/software/show/21

Gaussian G09_B.01 Scaling Results

November, 2010

Systems: Name **CPUs/node** RAM/node OS / Queue Interconnect 24 (2 sockets), 32.0 GB Centos 5.x, torque IB orca Opteron @ 2.2 GHz 8 (2 quad cores), XC 4, LSF 16 GB IB saw Xeon @ 2.83 GHz

Molecules and Methods/Models:

	Molecule \Module	B3LYP	MP2	QCISD	CCSD
		Opt + Freq	Opt + Freq	Opt + Freq	Opt +Freq
Ι	C4H14Cl2P2Pd	BS on card	BS on card		
	(test job 445)				
II	СНЗОН			6-311g(2df,p)	
	(test job 58)				
III	CH3CH2				6-311g(2df,p)
	(test job 684)				

General conclusions:

- 1. Gaussian does not scale for **CI** (cis, cisd, qcisd) and **CC** (ccsd, etc) based methods, serial (1 cpu) job is the right choice
- 2. For **DFT** (**b3lyp**, etc), speedup for 4-cpu parallel is good, 8-cpu job is reasonable
- 3. For MPx (MP2, etc), speedup for 4-cpu job is good, 8-cpu job is poor

Recommended Maximum processors for G09 jobs at SHARCNET

Methods/Modules	Opt	Freq	Energy
DFT (b3lyp, etc)	4 or 8	4 or 8	4 or 8
MP(2, 3, 4)	4	4	4
CISD (cis, cid, cisd, qcisd)	1	1	1
CCSD (ccd, ccsd, ccsd(t))	1	1	1

Results:

B3lyp / opt + freq

CPUs	orca	speedup	saw	speedup
1	2731	1	1961	1
	(45m31s)		(32m41s)	
4	840	3.25	656	2.99
	(14m)		(10m56s)	
8	540	6.06	460	4.26
	(9m)		(7m40s)	
12	431	6.34		
	(7m11s)			
24	365	7.48		
	(6m5s)			

MP2 / opt + freq

CPUs	orca	speedup	saw	speedup
1	30677	1	27949	1
	(8h31m17s)		(7h45m49s)	
4	11506	2.67	9927	2.82
	(3h11m46s)		(2h45m27s)	
8	8661	3.54	7533	3.71
	(2h24m21s)		(2h5m33s)	
12	6560	4.68		
	(1h49m20s)			
24	8243	3.72		
	(2h17m23s)			

QCISD / opt+freq

CPUs	orca	speedup	saw	speedup
1	4290	1	4378	1
	(1h11m30s		(1h12m58s)	
4	3384	1.27	5041	0.87
	(56m24s)		(1h24m1s)	
8	3134	1.37	3904	1.12
	(52m14s)		(1h5m5s)	

CCSD / opt+freq

CPUs	orca	speedup	saw	speedup
1	17807	1	16785	1
	(4h56m47s)		(4h39m45s)	
4	15237	1.17	17165	0.98
	(4h13m57s)		(4h46m05s)	
8	15953	1.12	16348	1.03
	(4h25m53s)		(4h32m28s)	