
Parallel Programming with Message Passing

Interface (MPI) – Day 1

SHARCNET Summer School

May 30, 2017

Jemmy Hu

SHARCNET

(519) 888-4567 x37854

jemmyhu@sharcnet.ca

mailto:jemmyhu@sharcnet.ca

Day 1 Contents

• Parallel Computing Concept

• MPI Basics

• MPI Communications

- Point-to-point (Send & Receive)

- Collectives

• Examples and hand-on exercises
through the lecture

• References

HPC - High Performance Computing

• Definition is nebulous (CS vs Application)

– resource (processing) intensive computation

– computing where the need for speed is compelling
• computing nearer the limit of what is feasible (clock time, …)

– parallel computing (this is too strict): use as many cpus as
possible for an application, speed, speed, speed …

• In reality, HPC is concerned with varied issues
involving:
– Hardware (cpu speed, networking)

• pipelining, instruction sets, multi-processors, inter-connects

– algorithms
• efficiency, techniques for concurrency

– software
• compilers (optimization/parallelization), libraries

Parallel Computer Memory Architectures
Distributed Memory (Cluster solution)

• Employ both shared and distributed memory architectures

• The shared memory component is usually a cache coherent SMP machine. Processors

on a given SMP can address that machine's memory as global.

• The distributed memory component is the networking of multiple SMPs. SMPs know

only about their own memory - not the memory on another SMP. Therefore, network

communications are required to move data from one SMP to another.

Example: SHARCNET cluster systems

System No of Nodes CPU/Node Node type

saw 336 8 Intel Xeon

orca 392 (320 + 72) 16, 24 AMD Opteron + Intel Xeon

graham ~1400? 32, mix? Intel Xeon +GPU

Example: Cluster Overview

InfiniBand

Interconnect

Parallel Computing: What is it?

• Parallel computing is when a program uses concurrency to either:

- decrease the runtime for the solution to a problem.

- Increase the size of the problem that can be solved.

Gives you more performance to throw at your problems.

• Parallel programming is not generally trivial, 3 aspects:

– specifying parallel execution

– communicating between multiple procs/threads

– synchronization

tools for automated parallelism are either highly specialized or absent

• Many issues need to be considered, many of which don’t have an
analog in serial computing

– data vs. task parallelism

– problem structure

– parallel granularity

Parallel Computing – problem faced

• Hardware

– in order to facilitate processors working together they must be able
to communicate

– interconnect hardware is complex

• sharing memory is easy to say, harder to realize as system
scales

• communication over any kind of network is still a challenge
compared to bus speed --- overhead can be significant

• Software

– parallel algorithms are actually fairly well understood

– the realization of algorithms in software is non-trivial

– compilers

• automated parallelism is difficult

– design

• portability and power are typically at odds with each other

Parallel Computing – software programming model

• Distributed memory systems
– For processors to share data, the programmer must explicitly

arrange for communication -“Message Passing”

– Message passing libraries:

• MPI (“Message Passing Interface”)

• Shared memory systems
– “Thread” based programming (pthread, …)

– Compiler directives (OpenMP)

– Can also do explicit message passing, of course

Programming Models

• languages

C, C++, Fortran

• threaded (shared memory)

OpenMP, pthreads

• message passing (distributed memory)

MPI, PGAS (UPC, Coarray Fortran)

• accelerator (GPU, Cell, MIC, FPGA)

CUDA, OpenCL, OpenACC

Task (function, control) Parallelism

Work to be done is decomposed across processors

• e.g. divide and conquer

• each processor responsible for some part of the

algorithm

• communication mechanism is significant

• must be possible for different processors to perform

different tasks

MPI Basics

Distributed Memory: Clusters

- Each cpu is independent!

- Parallel code consists of programs

running on separate cpus,

communicating with each other.

- Each processor could run entirely

different programs.

cpu2cpu1

cpu3 cpu4

cpu2cpu1

cpu3 cpu4

Distributed Memory: Clusters

- Each cpu/node has own memory!

- Whenever it needs data from another

region, requests it from that CPU.

- Usual model: “message passing"

Hardware:
Easy to build (Harder to build well)

Can build larger and larger clusters

relatively easily

Software:
Every communication has to be hand-

coded: hard to program

• An open standard library interface for message passing ratified by the MPI

Forum: https://www.open-mpi.org/

• primarily addresses the message-passing parallel programming

model: data is moved from the address space of one process to that of

another process through cooperative operations on each process

• The MPI standard has gone through a number of revisions, with the most

recent version being MPI-3.x

• Interface specifications have been defined for C/C++ and Fortran language

bindings

• Actual MPI library implementations differ in which version and features of

the MPI standard they support, e.g.:

openmpi v2.1.0

intelmpi 2017

mpich 3.x

MPI - what is it?

https://www.open-mpi.org/

Reasons for Using MPI

• Standardization - MPI is the only message passing library that can be

considered a standard. It is supported on virtually all HPC platforms.

Practically, it has replaced all previous message passing libraries.

• Portability - There is little or no need to modify your source code when

you port your application to a different platform that supports (and is

compliant with) the MPI standard.

• Performance Opportunities - Vendor implementations should be able to

exploit native hardware features to optimize performance.

Any implementation is free to develop optimized algorithms.

• Functionality - There are over 430 routines defined in MPI-3,

which includes the majority of those in MPI-2 and MPI-1.

• Availability - A variety of implementations are available,

both vendor and public domain.

MPI: a Library for Message-Passing

• Not built in to compiler

• Function calls that can be made from any compiler, many languages

• Just link to it

• Header files: mpi.h, mpif.h

• Compiler Wrappers: mpicc, mpiCC, mpif77, mpif90

mpicc --showme -o mpi_comm_1 mpi_comm_1.c

icc -o mpi_comm_1 mpi_comm_1.c -I/opt/sharcnet/openmpi/1.6.2/intel/include

-pthread -L/opt/sharcnet/torque/current/lib -Wl,--rpath -Wl,

/opt/sharcnet/torque/current/lib -L/opt/sharcnet/openmpi/1.6.2/intel/lib -lmpi -

ltorque -ldl -lm -lnuma -Wl,--export-dynamic -lrt -lnsl -lutil

wrappers for the system C, Fortran compilers that have the various –I

(header files), -L (libs) clauses in there automatically.

--showme (OpenMPI) shows which options are being used.

General MPI Program Structure:

MPI_Init (&argc, &argv)

MPI_INIT (ierr)

MPI_Init: Initializes the MPI execution environment. This function must be called in

every MPI program, must be called before any other MPI functions and must be called

only once in an MPI program.

MPI_Finalize: Terminates the MPI execution environment. This function should be the

last MPI routine called in every MPI program - no other MPI routines may be called

after it.

MPI - Environment Management Routines

MPI_Finalize ()

MPI_FINALIZE (ierr)

Initializing and finalizing

Simplest example – helloworld.c

#include <stdio.h>

int main (int argc, char *argv[]) {

printf("Hello World\n");

}

compile: cc -o hello hello.c

List files: ls

hello hello.c

Run the compiled code:
./hello

Hello World

MPI – helloworld_1.c

#include <stdio.h>

#include <mpi.h>

main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);

printf("Hello World\n");

MPI_Finalize();

}

Initializes the MPI

execution environment

Terminates the MPI

execution environment

Header file

Compile: mpicc -o hello_mpi_1 hello_mpi_1.c

mpirun

• Launches n processes, assigns each an MPI

rank and starts the program

• For multi-node run, has a list of nodes, ssh’s

to each node and launches the program

• Number of processes to use is almost always

equal to the number of processors (-np #)

• On your nodes, what happens when you run

this?

mpirun –np 4 hello_mpi_1

1

2

n

$ mpirun -np 4 ./hello_mpi_1

Hello World

Hello World

Hello World

Hello World

mpirun runs any program

• mpirun will start that process-launching

procedure for any progam

• Sets variables somehow that mpi programs

recognize so that they know which process

they are

$ hostname

$ mpirun -np 4 hostname

$ ls

$ mpirun -np 4 ls

$ hostname

saw331

$ mpirun -np 4 hostname

saw331

saw331

saw331

saw331

$ ls

hello hello.c hello_mpi_1 hello_mpi_1.c

$ mpirun -np 4 ls

hello hello.c hello_mpi_1 hello_mpi_1.c

hello hello.c hello_mpi_1 hello_mpi_1.c

hello hello.c hello_mpi_1 hello_mpi_1.c

hello hello.c hello_mpi_1 hello_mpi_1.c

Identifying the separate processes

MPI_Comm_size (comm, &size)

MPI_COMM_SIZE (comm, size, ierr)

MPI_Comm_size: Returns the total number of MPI processes in the specified communicator,

such as MPI_COMM_WORLD. If the communicator is MPI_COMM_WORLD,

then it represents the number of MPI tasks available to your application.

MPI_Comm_rank: Returns the rank of the calling MPI process within the specified

communicator. Initially, each process will be assigned a unique integer rank between 0 and

number of tasks - 1 within the communicator MPI_COMM_WORLD. This rank is often

referred to as a task ID.

MPI_Comm_rank (comm, &rank)

MPI_COMM_RANK (comm, rank,ierr)

How many processes are involved?

Which process “am I” (the rank)

#include <stdio.h>

#include <mpi.h>

main(int argc, char *argv[]) {

int num_procs, my_id;

MPI_Init(&argc, &argv);

/* find out MY process ID, and how many processes were started. */

MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

printf("Hello world! I'm process %d out of %d processes\n", my_id, num_procs);

MPI_Finalize();

}

Hello_mpi_2.c

mpicc -o hello_mpi_2 hello_mpi_2.c

mpirun -np 4 ./hello_mpi_2

Hello world! I'm process 3 out of 4 processes

Hello world! I'm process 0 out of 4 processes

Hello world! I'm process 2 out of 4 processes

Hello world! I'm process 1 out of 4 processes

mpif90 -o hello_mpi_f90 hello_mpi_f90.f90

program hello_mpi_f90

include 'mpif.h'

integer ierr, my_id, num_procs

call mpi_init(ierr)

call mpi_comm_rank(MPI_COMM_WORLD,my_id,ierr)

call mpi_comm_size(MPI_COMM_WORLD,num_procs,ierr)

! print rank and size to screen

print*, "Hello World! I am process ", my_id, "out of processors ", num_procs

call mpi_finalize(ierr)

end

mpirun -np 4 ./hello_mpi_f90

Hello World! I am process 0 out of 4 processors

Hello World! I am process 1 out of 4 processors

Hello World! I am process 3 out of 4 processors

Hello World! I am process 2 out of 4 processors

Fortran example

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv) {

int my_id, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_id == 0) {

/* do some work as process 0 */

}

else if (my_id == 1) {

/* do some work as process 1 */

}

else if (my_id == 2) {

/* do some work as process 2 */

}

else {

/* do this work in any remaining processes */

}

/* Stop MPI processes */

MPI_Finalize();

}

Each process can perform a different task, hello_play.c

mpicc -o hello_mpi_3 hello_mpi_3.c

mpirun -np 8 ./hello_mpi_3

What! I'm the others, with process ID 7

What! I'm the others, with process ID 6

What! I'm the others, with process ID 4

Hello! I'm the master with process ID 0

What! I'm the others, with process ID 3

Hi, my process ID is 1

What! I'm the others, with process ID 5

My process ID is 2

Hello_mpi_3.c

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv) {

int my_id, num_procs;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_id == 0) {

printf("Hello! I'm the master with process ID %d\n",my_id);

}

else if (my_id == 1) {

printf("Hi, my process ID is %d\n",my_id);

}

else if (my_id == 2) {

printf("My process ID is %d\n",my_id);

}

else {

printf("What! I'm the others, with process ID %d\n",my_id);

}

Hands-on exercise 1- getting started

• login to saw

• ssh to one of saw-dev1, saw-dev2, saw-dev3, saw-dev4, saw-dev5,

saw-dev6

• Go to your /home or /work directory

• Copy codes all over

cp –rf /work/jemmyhu/ss2017/MPI_2017 .

• Go to your own

cd ~/MPI_2017/codes/hello

• Run the hello world examples

• Modify hello_play.c and run

MPI – communicator

20

1 3

MPI groups processes into communicators.

• Each communicator has some size

-- number of tasks.

• Each task has a rank 0 … size-1

• Every task in your program belongs to

MPI_COMM_WORLD :

Global Communicator

MPI_Comm_rank(MPI_COMM_WORLD, &rank) :

Get current tasks rank

MPI_Comm_size(MPI_COMM_WORLD, &size) :

Get communicator size

• Can create our own communicators over

the same tasks

• May break the tasks up into subgroups

• May just re-order them for some reason

MPI_COMM_WORLD :

Size = 4, ranks = 0 … 3

MPI – point-to-point communication routines

•MPI_Send: to send a message to another process

The syntax of MPI_Send is:

MPI_Send(void *data_to_send, int send_count, MPI_Datatype send_type,

int destination_ID, int tag, MPI_Comm comm);

•data_to_send: variable of a C type that corresponds to the send_type supplied below

•send_count: number of data elements to be sent (nonnegative int)

•send_type: datatype of the data to be sent (one of the MPI datatype handles)

•destination_ID: process ID of destination (int)

•tag: message tag (int)

•comm: communicator (handle)
20

1 3
0 1 2

The syntax of MPI_Recv is:

MPI_Recv(void *received_data, int receive_count, MPI_Datatype receive_type,

int sender_ID, int tag, MPI_Comm comm, MPI_Status *status);

•received_data: variable of a C type that corresponds to the receive_type supplied below

•receive_count: number of data elements expected (int)

•receive_type: datatype of the data to be received (one of the MPI datatype handles)

•sender_ID: process ID of the sending process (int)

•tag: message tag (int)

•comm: communicator (handle)

•status: status struct (MPI_Status)

•MPI_Recv: to receive a message from another process

0

1

2

2
0

1 3

Send / Recv pair

Example_1 – send_recv.c

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]){

MPI_Init(&argc,&argv);

// Find out rank, size, set up a number

int my_rank, num_procs, number = -1;

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank == 0) {

// If I am rank 0, send number to process 1

MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (my_rank == 1) {

MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Process 1 received number %d from process 0\n", number);

}

// We are assuming at least 2 processes for this task

if (num_procs < 2) {

fprintf(stderr, "World size must be greater than 1 for %s\n", argv[0]);

MPI_Abort(MPI_COMM_WORLD, 1);

}

MPI_Finalize();

}

0 1

p0 send number to p1,

p1 recv it and print it out

send recv

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[]) {

MPI_Init(&argc,&argv);

int my_rank, num_procs, token;

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

/* Receive from the lower process and send to the higher process. Take care

of the special case when you are the first process to prevent deadlock.*/

if (my_rank != 0) {

MPI_Recv(&token, 1, MPI_INT, my_rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Process %d received token %d from process %d\n", my_rank, token, my_rank-1);

}

else {

token = -1; //Set the token's value if you are process 0

}

MPI_Send(&token, 1, MPI_INT, (my_rank+1)%num_procs, 0, MPI_COMM_WORLD);

/* Now process 0 can receive from the last process. */

if (my_rank == 0) {

MPI_Recv(&token, 1, MPI_INT, num_procs-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Process %d received token %d from process %d\n", my_rank, token, num_procs-1);

}

MPI_Finalize();

}

1
2

3

0

n-2
n-1

Example_2 – ring_mpi.c

mpirun -np 4 ./ring_mpi

Process 1 received token -1 from process 0

Process 2 received token -1 from process 1

Process 3 received token -1 from process 2

Process 0 received token -1 from process 3

mpirun -np 2 ./ring_mpi

Process 0 received token -1 from process 1

Process 1 received token -1 from process 0

mpirun -np 8 ./ring_mpi

Process 1 received token -1 from process 0

Process 2 received token -1 from process 1

Process 3 received token -1 from process 2

Process 4 received token -1 from process 3

Process 5 received token -1 from process 4

Process 6 received token -1 from process 5

Process 7 received token -1 from process 6

Process 0 received token -1 from process 7

mpicc -o ring_mpi ring_mpi.c

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[]) {

int numtasks, rank, dest, source, rc, count, tag=1;

char inmsg, outmsg=`hello`;

MPI_Status Stat; // required variable for receive routines

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// task 0 sends to task 1 and waits to receive a return message

if (rank == 0) {

dest = 1; source = 1;

MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); }

// task 1 waits for task 0 message then returns a message

else if (rank == 1) {

dest = 0; source = 0;

MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); }

// query recieve Stat variable and print message details

MPI_Get_count(&Stat, MPI_CHAR, &count);

printf("Task %d: Received %d char(s) from task %d with tag %d \n",

rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();

}

Example_3: Send/Recv pairs

mpirun -np 2 ./send_recv_2

Task 0: Received 1 char(s) from task 1 with tag 1

Task 1: Received 1 char(s) from task 0 with tag 1

Example_4 – array_sum.c

#include <stdio.h>

#define max_rows 10000

int array[max_rows];

int main(int argc, char *argv[])

{

int i, num_rows;

long int sum;

printf("please enter the number of numbers to sum: ");

scanf("%d", &num_rows);

if(num_rows > max_rows) {

printf("Too many numbers.\n");

exit(1);

}

/* initialize an array */

for(i = 0; i < num_rows; i++) {

array[i] = i;

}

/* compute sum */

sum = 0;

for(i = 0; i < num_rows; i++) {

sum += array[i];

}

printf("The grand total is: %ld\n", sum);

}

Serial: one loop to sum

Parallelize – array_sum

MPI: each process does partial sum

p0 p1 p2

avg_rows_per_process = num_rows/num_procs;

Workload division

- each element is independent, sum of

partial elements are independent as well

- work (sum) can be done separately by

several independent processors

Implement approach

/* determine how many rows per process to sum. */

/* distribute a portion of the bector to each child process */

for(an_id=1; an_id<num_procs; an_id++) {

start_row=an_id*avg_rows_per_process;

end_row=(an_id + 1)*avg_rows_per_process-1;

num_rows_to_send = end_row-start_row + 1;

Example:

20/4 =5

an_id=1

start_row=5

end_row= 9

9-5+1 = 5

Data Send from Master

A common pattern of interaction among parallel processes is for one, the master,

to allocate work to a set of slave processes and collect results from the slaves

to synthesize a final result.

In this fragment, the master program sends a contiguous portion of array1 to each

slave using MPI_Send. In practice, the master does not have to send an array; it

could send a scalar or some other MPI data type, and it could construct array1

from any components to which it has access.

The master process will execute program statements like:

/* distribute portions of array1 to slaves. */

for(an_id = 1; an_id < num_procs; an_id++) {

start_row = an_id*num_rows_per_process;
MPI_Send(&num_rows_to_send, 1, MPI_INT, an_id, send_data_tag, MPI_COMM_WORLD);

MPI_Send(&array1[start_row], num_rows_per_process, MPI_FLOAT, an_id, send_data_tag,

MPI_COMM_WORLD);

}

The slave processes to work with the master would resemble:

/* Receive an array segment, here called array2 */

MPI_Recv(&num_rows_to_receive, 1 , MPI_INT, root_process, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

MPI_Recv(&array2, num_rows_to_receive, MPI_FLOAT, root_process,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

Data Recv by slaves

Workflow

The master process (my_id==0) will execute program statements like:

/* distribute portions of array1 to slaves. */

MPI_Send ……

/* and, then collect the results from the slave processes,

* here in a variable called array2, and do something with them. */

for(an_id = 1 an_id < num_procs; an_id++) {

MPI_Recv(&array2, num_rows_returned, MPI_FLOAT, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

/* do something with its part*/

……

The slave processes (others) to work with:

/* Receive an array segment, here called array2 */

MPI_Recv ……

/* Do its own partial calculation with array2 here

……

/* placing the result in partial_sum, and send partial_sum to the root process. */

MPI_Send(&partial_sum, num_rows_to_return, MPI_FLOAT, root_process,

return_data_tag, MPI_COMM_WORLD);

The slave processes to work with this master would resemble:

/* Receive an array segment, here called array2 */

MPI_Recv(&num_rows_to_receive, 1 , MPI_INT, root_process, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

MPI_Recv(&array2, num_rows_to_receive, MPI_FLOAT, root_process,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

/* Do something with array2 here, placing the result in partial_sum,

* and send partial_sum to the root process. */

MPI_Send(&partial_sum, num_rows_to_return, MPI_FLOAT, root_process,

return_data_tag, MPI_COMM_WORLD);

Hands-on exercise 2 – parallel array sum in MPI

1) Run the examples

~/MPI_2017/codes/send_recv

2) work on:

array_sum_pseudo.c (for advance programmer)

or

array_sum_mpiAlmost.c (fill in a few lines)

in

~/MPI_2017/codes/exercise

Before see the complete code:

array_sum_mpi.c

In

~/MPI_2017/codes/source

p1

array1

array2

p0

p2

p3

Example_5: 1d heat diffusion

• Model 1d heat diffusion:

- diffusion of heat along an infinitely narrow pipe

• Initial state:

– The whole pipe is at a stable and fixed temperature

– At time 0, set both ends to different temperatures, which remain fixed
throughout the computation

• Calculate how temperature change in the rest of the pipe over time

– Expect the temperature will converge to a smooth gradient from one end of
the pipe to the other

Heat Equation

• Mathematically, the one-dimensional heat conduction equation is

• Derivatives are approximated by finite differences

• An explicit numerical scheme for computing based on :

∂u/∂t

u

k

+2

k+1 t

∂u

∂x

x

ui u i

t

u i
ku i-1

k
u i
k u i+1

k

2

u i-1
k

2

u i
k2 u i+1

k

2x
~~

~~

u
k+1

u

i = + (- 2 +)

kk+1

Serial implementation

• Two data arrays: uk refers to u at timestep k, ukp1 refers to u at timestep k+1

ukp1[i] = uk[i] +(dt/dx*dx)(uk[i+1] – 2uk[i] + uk[i-1])

Initial condition
initialize(uk, ukp1, nx);

i-1 i+1

i

i

uk

ukp1

at time step: k

next time step: k +1

void initialize(double uk[], double ukp1[], int nx) {

int i;

uk[0] = LEFTVAL; uk[nx-1] = RIGHTVAL;

for (i = 1; i < nx-1; ++i)

uk[i] = 0.0;

for (i = 0; i < nx; ++i)

ukp1[i] = uk[i];

}

0 0 0 0 0 0 0 01.0 10…

0 0 0 0 0 0 0 00 0…

uk

ukp1

The main computation is a time-step process

When to stop?
- Use a converge threshold
- Iteration steps

for (step = 0; (step < maxsteps) && (maxdiff >= threshold); ++step) {

double diff;

/* compute new values */

for (i = 1; i < nx-1; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* check for convergence */

maxdiff = 0.0;

for (i = 1; i < nx-1; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if(diff > maxdiff)

maxdiff = diff;

}

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

}

~/ss2017/MPI_2017/codes/exercise/ser_heat_1d.c

Parallelism

• Work division

– Observation: ukp1[i] only depends on uk[i-1], uk[i], uk[i+1]

– So, computations of ukp1[i] and ukp1[j] are independent of each other

– We can divide the work of computing ukp1 among several processors

numPoints per proc = totalPoints(nx)/numProcs

– Calculate inner points using data within the chunk owned by the processor

i

i+1i-1

• Work division, data communication

– Most left and right points need data belongs to another processors

– Two one-to-one data exchanges are needed on every processor per time
step

P(0) P(i) P(i+1)

p0: rightmost point needs data from the leftmost point of p1

pi: leftmost point needs data from the rightmost point of p(i-1)
rightmost point needs data from the leftmost point of p(i+1)

P(n-1)

……

…

p(n-1): leftmost point needs data from the rightmost point of p(n-2)

Data structure, use of ghost cells

Define “neighbors”

/* leftNbr, rightNbr, assume evenly divide */

leftNbr = myID - 1; /* ID of left "neighbor" process */

rightNbr = myID + 1; /* ID of right "neighbor" process */

numPoints = (nx / numProcs);

/* uk, ukp1 include a "ghost cell" at each end */

uk = malloc(sizeof(double) * (numPoints+2));

ukp1 = malloc(sizeof(double) * (numPoints+2));

Initialization per processor

/* uk, ukp1 include "ghost cell" at each end */

void initialize(double uk[], double ukp1[], int numPoints,

int numProcs, int myID) {

int i;

for (i = 1; i <= numPoints; ++i)

uk[i] = 0.0;

/* left endpoint */

if (myID == 0)

uk[1] = LEFTVAL;

/* right endpoint */

if (myID == numProcs-1)

uk[numPoints] = RIGHTVAL;

/* copy values to ukp1 */

for (i = 1; i <= numPoints; ++i)

ukp1[i] = uk[i];

}

if (myID != 0)

MPI_Send(&uk[1], 1, MPI_DOUBLE, leftNbr, 0, MPI_COMM_WORLD);

if (myID != numProcs-1)

MPI_Send(&uk[numPoints], 1, MPI_DOUBLE, rightNbr, 0, MPI_COMM_WORLD);

if (myID != 0)

MPI_Recv(&uk[0], 1, MPI_DOUBLE, leftNbr, 0, MPI_COMM_WORLD, &status);

if (myID != numProcs-1)

MPI_Recv(&uk[numPoints+1],1, MPI_DOUBLE, rightNbr, 0, MPI_COMM_WORLD,

&status);

Exchange boundary information

/* compute new values for interior points */

for (i = 2; i < numPoints; ++i) {

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

/* compute new values for boundary points

* (no real need to do these separately, but it would allow us to

* understand the concept better) */

if (myID != 0) {

int i=1;

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

if (myID != numProcs-1) {

int i=numPoints;

ukp1[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}

Compute new values

/* check for convergence */

maxdiff_local = 0.0;

for (i = 1; i <= numPoints; ++i) {

diff = fabs(uk[i] - ukp1[i]);

if(diff > maxdiff_local)

maxdiff_local = diff;

}

/* collect diff */
MPI_Allreduce(&maxdiff_local, &maxdiff, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);

/* "copy" ukp1 to uk by swapping pointers */

temp = ukp1; ukp1 = uk; uk = temp;

Check for convergence, data swapping

Hands-on exercise 3

– implement 1d heat diffusion in MPI?

~/ss2017/MPI_2017/codes/exercise

ser_heat_1d.c

mpi_heat_1d_pseudo.c

Collective communication

MPI has a special function that is

dedicated to synchronizing processes:

Collective communication is a method of communication which

involves participation of all processes in a communicator.

One of the things to remember about collective communication

is that it implies a synchronization point among processes. This

means that all processes must reach a point in their code before

they can all begin executing again.

MPI_Barrier(MPI_Comm communicator)

Broadcasting with MPI_Bcast

A broadcast is one of the standard collective communication techniques.

During a broadcast, one process sends the same data to all processes in a

communicator.

One of the main uses of broadcasting is to send out user input to a parallel

program, or send out configuration parameters to all processes.

The communication pattern of a broadcast looks like this:

MPI_Bcast(

void* data,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator

)

MPI_Scatter

MPI_Scatter involves a designated root process

sending data to all processes in a communicator.

The primary difference between MPI_Bcast

and MPI_Scatter is small but important.

MPI_Bcast sends the same piece of data to all

processes

while

MPI_Scatter sends chunks of an array to different

processes.

MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

MPI_Gather

MPI_Gather is the inverse of MPI_Scatter.

Instead of spreading elements from one

process to many processes,

MPI_Gather takes elements from many

processes and gathers them to one single

process.

This routine is highly useful to many parallel

algorithms, such as parallel sorting and

searching.

MPI_Gather (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

MPI_Allgather

Given a set of elements distributed across

all processes

MPI_Allgather will gather all of the

elements to all the processes.

In the most basic sense,

MPI_Allgather is an MPI_Gather

followed by an MPI_Bcast. many-to-many communication pattern

MPI_Allgather (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

if (my_rank == 0) {

rand_nums = create_rand_nums(elements_per_proc * num_procs);

}

// Create a buffer that will hold a subset of the random numbers

float *sub_rand_nums = malloc(sizeof(float) * elements_per_proc);

// Scatter the random numbers to all processes

MPI_Scatter(rand_nums, elements_per_proc, MPI_FLOAT, sub_rand_nums, elements_per_proc, MPI_FLOAT, 0,

MPI_COMM_WORLD);

// Compute the average of your subset

float sub_avg = compute_avg(sub_rand_nums, elements_per_proc);

// Gather all partial averages down to the root process

float *sub_avgs = NULL;

if (my_rank == 0) {

sub_avgs = malloc(sizeof(float) * num_procs);

}

MPI_Gather(&sub_avg, 1, MPI_FLOAT, sub_avgs, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);

// Compute the total average of all numbers.

if (my_rank == 0) {

float avg = compute_avg(sub_avgs, num_procs);

}

MPI Scatter/Gather: Average numbers in an array

MPI_Reduce

Similar to MPI_Gather, MPI_Reduce

takes an array of input elements on

each process and returns

an array of output elements

to the root process.

MPI_Allreduce

Many parallel applications will require

accessing the reduced results across all

processes rather than the root process

MPI_Allreduce is identical to MPI_Reduce

with the exception that it does not need a

root process id (since the results are

distributed to all processes).

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm)

/* compute pi by approximating the area under the curve f(x) = 4 / (1 + x*x)

* between 0 and 1.

*

*/

#include <stdio.h>

#define NBIN 100000

int main() {

int i;

double step,x,sum=0.0,pi;

step = 1.0/NBIN;

for (i=0; i<NBIN; i++) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

pi = sum*step;

printf("PI = %f\n",pi);

}

pi-serial.c

Hands-on exercise 4

– calculate pi using MPI collective communications?

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

Work on pi_mpiAlmost.c

in

~/MPI_2017/codes/exercise

MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

MPI datatypes

Online tutorials:

https://computing.llnl.gov/tutorials/mpi/
http://mpitutorial.com/tutorials/
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml

https://agenda.infn.it/getFile.py/access?contribId=3&sessionId

=0&resId=0&materialId=slides&confId=9446

References

http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

http://www.uio.no/studier/emner/matnat/ifi/INF3380/v11/unde

rvisningsmateriale/inf3380-week11.pdf

http://web.mst.edu/~ercal/387/MPI/cpi.c

http://www.new-npac.org/projects/cdroms/cewes-1999-06-

vol2/cps615course/mpi-c.html

https://computing.llnl.gov/tutorials/mpi/
http://mpitutorial.com/tutorials/
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml
https://agenda.infn.it/getFile.py/access?contribId=3&sessionId=0&resId=0&materialId=slides&confId=9446
http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html
http://www.uio.no/studier/emner/matnat/ifi/INF3380/v11/undervisningsmateriale/inf3380-week11.pdf
http://web.mst.edu/~ercal/387/MPI/cpi.c
http://www.new-npac.org/projects/cdroms/cewes-1999-06-vol2/cps615course/mpi-c.html

